MTH 301: Group Theory Semester 1, 2023-24

November 8, 2023

Contents

1 Preliminaries 3
1.1 Basic definitions and examples 3
1.2 The cyclic group 4
1.3 The symmetric group 5
1.3.1 Basic definitions and examples 5
1.3.2 k-cycles 7
1.3.3 Parity of a permutation 8
1.3.4 Conjugacy classes of permutations 8
2 Subgroups 9
2.1 Basic definitions and examples 9
2.2 Cosets and Lagrange's Theorem 10
2.3 Normal subgroups 12
3 Homomorphisms and isomorphisms 12
3.1 Homomorphisms 12
3.2 The Isomorphism Theorems 14
4 Group actions 16
4.1 Basic definitions and examples 16
4.2 The Orbit-Stabilizer Theorem 18
4.3 Applications of the Orbit-Stabilizer Theorem 19
4.3.1 The Burnside Lemma 19
4.3.2 The action $G \curvearrowright G$ 19
4.3.3 The action $G \curvearrowright^{c} G$ and the Class Equation 20
4.4 Sylow's Theorems 21
4.5 Simple groups 22
5 Semi-direct products and group extensions 23
5.1 Direct products 23
5.2 Semi-direct products 25
5.3 Group Extensions 27
6 Classification of groups up to order 15 29
7 Solvable groups 29
7.1 Normal and composition series 29
7.2 Derived series and solvable groups 31

1 Preliminaries

1.1 Basic definitions and examples

(i) (a) A group (G, \cdot) is a nonempty set G with a binary operation \cdot satisfying the properties:
(a) (Closure property) For any $a, b \in G$, we have $a \cdot b \in G$.
(b) (Associativity) For any $a, b, c \in G$, we have

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c .
$$

(c) (Existence of identity) There exists an element $e \in g$ called the identity element such that

$$
a \cdot e=a=e \cdot a
$$

for any $a \in G$.
(d) (Existence of inverse) For each $a \in G$, there exists an $a^{-1} \in G$ such that

$$
a \cdot a^{-1}=e=a^{-1} \cdot a .
$$

(b) In a group (G, \cdot) as above, the following properties hold:
(a) (Right cancellation law) For $a, b, c \in G$, if $a \cdot c=b \cdot c$, then $a=b$.
(b) (Left cancellation law) For $a, b, c \in G$, if $c \cdot a=c \cdot b$, then $a=b$.
(c) The identity e is unique.
(d) Every element $a \in G$ has a unique inverse a^{-1}.
(ii) Let G be a group.
(a) G is a said to be finite if the cardinality of the set G is finite. Otherwise, G is said to be infinite.
(b) The order of a finite group (denoted by $|G|$) is the number of elements in G.
(iii) Examples of groups:
(a) Additive groups: $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$, and $M_{n}((F)$, for $F=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}.
(b) Multiplicative groups $\left(\mathbb{Q}^{\times}, \cdot\right),\left(\mathbb{R}^{\times}, \cdot\right),\left(\mathbb{C}^{\times}, \cdot\right)$, and $G L(n, X)$, for $X=\mathbb{Q}, \mathbb{R}$, and \mathbb{C}.
(c) The Dihedral group $D_{2 n}$ - the group of symmetries of a regular n-gon.
(iv) Let G be group and $S \subset G$. Then S is a generating set for G (denoted by $G=$ $\langle S\rangle$) if every element in G can be expressed as a finite product of elements in S and their inverses.
(v) The order of an element $g \in G$ (denoted by $|g|$) is the smallest positive integer m such that $g^{m}=1$. If such an m does not exist for a given $g \in G$, then g is said to be of infinite order in G.
(vi) Let G be a group, let $g \in G$ with $|g|=n$. Then

$$
\left|g^{k}\right|=\frac{n}{\operatorname{gcd}(k, n)} .
$$

(vii) A group G is said to be abelian if $g h=h g$ for all $g, h \in G$.
(viii) Examples (non-examples) of abelian groups.
(a) The groups in Examples 1.1 (iii)(a) are abelian groups.
(b) The matrix groups in Examples 1.1 (iii)(b) and the group in (c) are non-abelian groups.

1.2 The cyclic group

(i) A group G is said to be cyclic, if there exists a $g \in G$ such that $G=\langle g\rangle$. In other words, G is cyclic, if its generated by a single element.
(ii) Let $G=\langle g\rangle$ be a cyclic group.
(a) If G is of order n (denoted by C_{n}), then

$$
C_{n}=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\} .
$$

(b) If G is of infinite order, then

$$
G=\left\{1, g^{ \pm 1}, g^{ \pm 2}, \ldots\right\}
$$

(iii) Realizing C_{n} as the multiplicative group of complex $n^{t h}$ roots unity.
(iv) The group $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$ of residue classes modulo n under + , where

$$
[i]=\{n k+i \mid k \in \mathbb{Z}\}
$$

(v) Using the association $[k] \leftrightarrow e^{i 2 \pi k / n}$, for $0 \leq k \leq n-1$, we can identify \mathbb{Z}_{n} with C_{n}.
(vi) Let $G=\langle g\rangle$ be a cyclic group.
(a) Then G is abelian.
(b) If $H \leq\langle g\rangle$, then H is also cyclic.
(c) If $|G|=n$, then it has a unique cyclic subgroup $\left\langle g^{n / d}\right\rangle$ of order d for divisor d of n.

1.3 The symmetric group

1.3.1 Basic definitions and examples

(i) Let X be a nonempty set. Then the set of permutations (or self-bijections) of X defined by

$$
S(X):=\{f: X \rightarrow X: f \text { is a bijection }\}
$$

forms a group under composition called the symmetric group of X.
(ii) When $|X|=n$, without loss of generality, we take $X=\{1,2, \ldots, n\}$, and we denote the group $S(X)$ simply by S_{n}. The group S_{n}, of order $n!$, is called the symmetric group (or the permutation group) on n letters.
(iii) Examples of symmetric groups.
(a) $S_{2} \cong \mathbb{Z}_{2}$.
(b) Since each symmetry of a regular n-gon induces a permutation of its n vertices, we have $S_{3} \cong D_{6}$ and in general, $D_{2 n}<S_{n}$ for $n \geq 4$.
(c) For $n \geq 4, S_{n}$ is a non-abelian group.
(d) For any group $G, \operatorname{Aut}(G)<S(G)$, since each automorphism is a bijective map.
(e) Given any group G and fixed $g \in G$, consider $\varphi_{g}: G \rightarrow G$ defined by $\varphi_{g}(h)=g h$, for all $h \in G$ (i.e., left multiplication by the element g). Then it is apparent that $\varphi_{g} \in S(G)$, and consequently, the map

$$
\psi: G \rightarrow S(G): g \stackrel{\psi}{\hookrightarrow} \varphi_{g}
$$

is a monomorphism. In particular, if $|G|=n$, then G imbeds into S_{n} (i.e. $G \hookrightarrow S_{n}$).
(iv) A typical element $\sigma \in S_{n}$ is a bijection $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$, so we often denote such a σ by

$$
\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n-1) & \sigma(n)
\end{array}\right)
$$

To further simplify notation for σ, we only list the values of σ on the subset $\{i \in\{1,2, \ldots, n\}: \sigma(i) \neq i\}$. For example, the permutation $\sigma \in S_{5}$ given by

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right)
$$

is simply written as

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) .
$$

(v) A product $\sigma_{1} \sigma_{2}$ of two permutations $\sigma_{1}, \sigma_{2} \in S_{n}$ is defined as the permutation

$$
\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\left(\sigma_{1} \circ \sigma_{2}\right)(1) & \left(\sigma_{1} \circ \sigma_{2}\right)(2) & \ldots & \left(\sigma_{1} \circ \sigma_{2}\right)(n-1) & \left(\sigma_{1} \circ \sigma_{2}\right)(n)
\end{array}\right) .
$$

(vi) The support of a permutation $\sigma \in S_{n}$ is defined by

$$
\operatorname{supp}(\sigma):=\{i \in\{1, \ldots, n\}: \sigma(i) \neq i\} .
$$

(vii) Two permutations $\sigma_{1}, \sigma_{2} \in S_{n}$ are said to be disjoint if

$$
\operatorname{supp}\left(\sigma_{1}\right) \cap \operatorname{supp}\left(\sigma_{2}\right)=\varnothing .
$$

(viii) Any two disjoint permutations in S_{n} commute.

1.3.2 k-cycles

(i) A k-cycle in S_{n} is a permutation of the form

$$
\left(\begin{array}{ccccc}
i_{1} & i_{2} & \ldots & i_{k-1} & i_{k} \\
i_{2} & i_{3} & \ldots & i_{k} & i_{1}
\end{array}\right)
$$

where $1 \leq k \leq n$. A k-cycle as above is often denoted by

$$
\left(i_{1} i_{2} \ldots i_{k}\right)
$$

A 2-cycle in S_{n} is a called a transposition (or an inversion).
(ii) Consider the k-cycle $\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)$ in S_{n}. Then we have:
(a)

$$
\sigma=\left(i_{1} \sigma\left(i_{1}\right) \sigma^{2}\left(i_{1}\right) \ldots \sigma^{k-1}\left(i_{1}\right)\right), \text { and }
$$

(b) $o(\sigma)=k$.
(iii) Example of k-cycles.
(a) The permutation

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 4 & 5
\end{array}\right) \in S_{5}
$$

is a 3 -cycle given by (123).
(b) The permutation

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4
\end{array}\right) \in S_{4}
$$

is a 2 -cycle (transposition) given by (23).
(iv) Two cycles $\left(i_{1} i_{2} \ldots i_{k}\right),\left(j_{1} j_{2} \ldots j_{\ell}\right) \in S_{n}$ commute if

$$
\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{\ell}\right\}=\varnothing .
$$

(v) Every k-cycle is a product of no less than $k-1$ transpositions. In particular, for a k-cycle $\left(i_{1} i_{2} \ldots i_{k}\right) \in S_{n}$, we have

$$
\left(i_{1} i_{2} \ldots i_{k}\right)=\left(i_{1} i_{k}\right)\left(i_{1} i_{k-1}\right) \ldots\left(i_{1} i_{2}\right) .
$$

(vi) Every permutation $\sigma \in S_{n}$ can be expressed uniquely as a product of disjoint cycles. This is called the unique cycle decomposition of the permutation σ.

1.3.3 Parity of a permutation

(i) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_{n}$ is given by

$$
\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k_{\sigma}}
$$

where each σ_{i} is an m_{i}-cycle. Then we define

$$
N(\sigma):=\sum_{i=1}^{k_{\sigma}}\left(m_{i}-1\right)
$$

(ii) The sign (or parity) of a permutation $\sigma \in S_{n}$ is defined by

$$
\operatorname{sgn}(\sigma):=(-1)^{N(\sigma)} .
$$

(iii) A permutation $\sigma \in S_{n}$ is called an:
(a) even permutation, if $\operatorname{sgn}(\sigma)=1$.
(b) odd permutation, if $\operatorname{sgn}(\sigma)=-1$.
(iv) Let $A_{n}=\left\{\sigma \in S_{n}: \operatorname{sgn}=1\right\}$. For $n \geq 2$, the map

$$
\tau: S_{n} \rightarrow\{ \pm 1\}\left(=\mathbb{Z}_{2}\right): \sigma \stackrel{\tau}{\rightarrow} \operatorname{sgn}(\sigma)
$$

is an epimorphism with $\operatorname{ker} \tau=A_{n}$. Thus, we have

$$
S_{n} / A_{n} \cong \mathbb{Z}_{2}
$$

Consequently, $A_{n} \triangleleft S_{n}$ and $\left[S_{n}: A_{n}\right.$] $=2$. The group A_{n} consisting of the even permutations in S_{n} is called the alternating group on n letters.

1.3.4 Conjugacy classes of permutations

(i) Let G be a nontrivial group. Two elements $g, h \in G$ are said to be conjugate in G if there exists $x \in G$ such that $g=x h x^{-1}$.
(ii) The relation \sim_{c} on G given by

$$
g \sim_{c} h \Longleftrightarrow g \text { and } h \text { are conjugate }
$$

defines an equivalence relation on G. Each equivalence class (denoted by $[g]_{c}$) induced by the relation \sim_{c} is called a conjugacy class of G.
(iii) A partition of a positive integer n is a way of writing n as a sum of positive integers, up to reordering of summands. For example, the partitions of 4 are:
(a) $1+1+1+1$,
(b) $2+1+1$,
(c) $3+1$,
(d) $2+2$, and
(e) 4 .
(iv) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_{n}$ is given by

$$
\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k_{\sigma}}
$$

where each σ_{i} is an m_{i}-cycle. Then:
(a) $o(\sigma)=\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k_{\sigma}}\right)$.
(b) As $\sum_{i=1}^{k_{\sigma}} m_{i}=n$, this decomposition induces a partition P_{σ} of the integer n.
(c) Given two permutations $\sigma_{1}, \sigma_{2} \in S_{n}$,

$$
\left[\sigma_{1}\right]_{c}=\left[\sigma_{2}\right]_{c} \Longleftrightarrow P_{\sigma_{1}}=P_{\sigma_{2}}
$$

Consequently, the number of distinct conjugacy classes of S_{n} is precisely the number of partitions of n.

2 Subgroups

2.1 Basic definitions and examples

(i) A subset H of a group G is called a subgroup of G (in symbols $H \leq G$) if H forms a group under the operation in G.
(ii) Let H be a subgroup H of a group G. Then H is said to be:
(a) proper subgroup of G (in symbols $H<G$) if $H \neq G$.
(b) trivial subgroup if $H=\{1\}$.
(c) nontrivial subgroup of G if $H \neq\{1\}$.
(iii) Subgroup Criterion. Let G be a group. Then $H \leq G$ if and only if for every $a, b \in H, a b^{-1} \in H$.
(iv) Examples of subgroups:
(a) $n \mathbb{Z}<\mathbb{Z}$, for $n \geq 2$.
(b) $D_{2 n}<S_{n}$, for $n \geq 3$.
(c) $A_{n}<S_{n}$, for $n \geq 3$.
(d) $C_{n}<\mathbb{C}^{\times}$.
(e) For $n \geq 2$, special linear $\operatorname{group} \operatorname{SL}(n, F)=\{A \in \operatorname{GL}(n, F) \mid \operatorname{det}(A)=1\}$ is a subgroup of $\mathrm{GL}(n, F)$ when $F=\mathbb{R}, \mathbb{Q}$, or \mathbb{C}.
(f) For $n \geq 2$, $\operatorname{SL}(n, \mathbb{Q})<\operatorname{SL}(n, \mathbb{R})<\operatorname{SL}(n, \mathbb{C})$.
(g) For $n \geq 2$, GL $(n, \mathbb{Q})<\operatorname{GL}(n, \mathbb{R})<\mathrm{GL}(n, \mathbb{C})$.

2.2 Cosets and Lagrange's Theorem

(i) Let G be a group and $H \leq G$. Then the relation \sim_{H} on G defined by

$$
x \sim_{H} y \Longleftrightarrow x y^{-1} \in H
$$

is an equivalence relation.
(ii) Let G be a group and $H \leq G$. Then a left coset of H in G is given by

$$
g H=\{g h \mid h \in H\},
$$

and a right coset of H in G is given by

$$
H g=\{h g \mid h \in H\} .
$$

(iii) Let G be a group and $H \leq G$. Then

$$
g H=\left\{g^{\prime} \in G \mid g^{\prime} \sim_{H} g\right\} .
$$

(iv) Let G be a group and $H \leq G$. Then there exists a bijective correspondence between:
(a) $g_{1} H$ and $g_{2} H$, for any $g_{1}, g_{2} \in H$, and
(b) $g H$ and $H g$, for any $g \in G$.
(v) We define $G / H:=\{g H \mid g \in G\}$ and $H \backslash G:=\{H g \mid g \in G\}$.
(vi) Let G be a group and $H \leq G$. Then there is a bijective correspondence between G / H and $H \backslash G$.
(vii) The number of distinct left (or right) cosets of subgroup H of G is called the index of H in G, which is denoted by $G: H]$. In other words,

$$
[G: H]=|G / H|=|H \backslash G| .
$$

Consequently, for a finite group G we have

$$
|G|=[G: H] \cdot|H| .
$$

(viii) Lagrange's Theorem. Let G be a finite group and $H \leq G$. Then $|H|||G|$.
(ix) The Euler totient function is defined by:

$$
\phi(n)=\mid\left\{k \in \mathbb{Z}^{+} \mid k<n \text { and } \operatorname{gcd}(k, n)=1\right\} \mid .
$$

(x) The multiplicative group $U_{n}=\left\{[k] \in \mathbb{Z}_{n} \mid \operatorname{gcd}(k, n)=1\right\}$ is called the group of units modulo n. Note that $\left|U_{n}\right|=\phi(n)$.
(xi) Euler's Theorem. If a and n are positive integers such that $\operatorname{gcd}(a, n)=1$, then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n) .
$$

(xii) Fermat's Theorem. If p is a prime number and a is a positive integer, then

$$
a^{p} \equiv a \quad(\bmod p) .
$$

(xiii) Let G be a group and $H, K \leq G$. Then:
(a) $H K \leq G$ iff $H K=K H$,
(b) $H \cap K \leq G$, and
(c) If $|H|,|K|<\infty$, then $|H K|=\frac{|H||K|}{|H \cap K|}$.

2.3 Normal subgroups

(i) Let G be a group and $H \leq G$. Then H is said to be a normal subgroup of G (in symbols $H \unlhd G$ and $H \triangleleft G$, if H is proper) if $g N g^{-1} \subset N$, for all $g \in G$.
(ii) Examples of normal subgroups:
(a) $m \mathbb{Z} \unlhd \mathbb{Z}$, for all $m \in \mathbb{Z}$
(b) $A_{n} \triangleleft S_{n}$, for $n \geq 3$.
(c) For $n \geq 2$, $\mathrm{SL}(n, X) \triangleleft \mathrm{GL}(n, X)$, for $X=\mathbb{Q}, \mathbb{R}$, or \mathbb{C}.
(d) $C_{n} \triangleleft \mathbb{C}^{\times}$, for $n \geq 2$.
(iii) The G be a group, and $N \leq G$. Then the following statements are equivalent
(a) $N \unlhd G$.
(b) $g N g^{-1}=N$, for all $g \in G$.
(c) $g N=N g$, for all $g \in G$.
(d) $(g N)(h N)=g h N$, for all $g, h \in G$.
(iv) Let G be a group and $N \unlhd G$. Then G / N forms a group under the operation $(g N) \cdot(h N)=g h N$.
(v) Let G be a group, and $H \leq G$ such that $[G: H]=2$. Then $H \triangleleft G$.
(vi) Let G be group, $H \leq G$, and $N \unlhd G$. Then
(a) the internal direct product $N H=\{n h: n \in N, h \in H\} \leq G$
(b) $N \cap H \unlhd H$.
(c) $N \unlhd N H$.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G, H be group, and $\varphi: G \rightarrow H$ be a map. Then φ is said to be a homomorphism if

$$
\varphi(g h)=\varphi(g) \varphi(h),
$$

for all $g, h \in G$.
(ii) Examples of homomorphisms:
(a) The trivial homomophism $\varphi: G \rightarrow H$ given by $\varphi(x)=1$, for all $x \in G$.
(b) The identity homomorphism $i: G \rightarrow G$ given by $i(g)=g$, for all $g \in G$.
(c) The $\operatorname{map} \varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(x)=n x$ for any $n \in \mathbb{Z}$.
(d) The map $\varphi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ defined by $\varphi_{n}(x)=[x]$.
(e) The determinant map Det: $\operatorname{GL}(n, \mathbb{C}) \rightarrow \mathbb{C}^{\times}$.
(f) The sign map $\tau: S_{n} \rightarrow\{ \pm 1\}$ defined by $\tau(\sigma)=(-1)^{n(\sigma)}$, where if σ is expressed as product of transpositions, $n(\sigma)$ is the number of transpositions appearing in the product. In other words,

$$
\tau(\sigma)= \begin{cases}1, & \text { if } \sigma \in A_{n}, \text { and } \\ -1, & \text { otherwise } .\end{cases}
$$

(iii) Let $\varphi: G \rightarrow H$ be a homomorphism.
(a) If φ is injective, then it is called a monomorphism.
(b) If φ is surjective, then it is called an epimorphism.
(iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d) and (f) are epimorphisms.
(v) Let $\varphi: G \rightarrow H$ be a homomorphism. Then:
(a) $\varphi(1)=1$ and
(b) $\varphi\left(g^{-1}\right)=\varphi(g)^{-1}$, for all $g \in G$.
(vi) Let $\varphi: G \rightarrow H$ be a homomorphism. Then:
(a) The set $\operatorname{ker} \varphi=\{g \in G: \varphi(g)=1\}$ is called the kernel of φ.
(b) The set $\operatorname{Im} \varphi=\{\varphi(g): g \in G\}$ is called the image of φ.
(vii) Let $\varphi: G \rightarrow H$ be a homomorphism. Then:
(a) $\operatorname{ker} \varphi \unlhd G$.
(b) $\operatorname{Im} \varphi \leq H$.
(viii) A homomorphism $\varphi: G \rightarrow H$ is said to be order-preserving if $|g|=|\varphi(g)|$, for every $g \in G$ of finite order.
(ix) Let $\varphi: G \rightarrow H$ be a homomorphism. Then the following statements are equivalent.
(a) φ is a monomorphism.
(b) $G \cong \operatorname{Im} \varphi$.
(c) $\operatorname{ker} \varphi=\{1\}$.
(d) φ is order-preserving

3.2 The Isomorphism Theorems

(i) Let G be a group, and $N \triangleleft G$. Then the quotient map $q: G \rightarrow G / N$ given by $q(g)=g N$ is an epimorphism.
(ii) First Isomorphism Theorem: Let G, H be groups, and $\varphi: G \rightarrow H$ is a homomorphism. Then

$$
G / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi .
$$

In particular, if φ is onto, then

$$
G / \operatorname{ker} \varphi \cong H .
$$

(iii) Applications of the First isomorphism theorem.
(a) The map Det: $\mathrm{GL}(n, F) \rightarrow F^{\times}$is an epimorphism whose kernel is given by

$$
\operatorname{ker}(\operatorname{Det})=\{A \in \operatorname{GL}(n, F): \operatorname{Det}(A)=1\}=\operatorname{SL}(n, F) .
$$

Therefore, the First isomorphism theorem implies that

$$
\mathrm{GL}(n, F) / \mathrm{SL}(n, F) \cong F^{\times} .
$$

(b) For $n \geq 2$, the map $\beta_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is an epimorphism whose kernel is given by

$$
\operatorname{ker} \beta_{n}=\left\{x \in \mathbb{Z}: \beta_{n}(x)=[x]=[0]\right\}=n \mathbb{Z} .
$$

Therefore, the First isomorphism Theorem implies that

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}
$$

(c) The map

$$
\varphi: \mathbb{R} \rightarrow S^{1}=\{z \in \mathbb{C}:|z|=1\}: x \xrightarrow{\varphi} e^{i 2 \pi x}
$$

is an epimorphism whose kernel is given by

$$
\operatorname{ker} \varphi=\{x \in \mathbb{R}: \varphi(x)=\cos (2 \pi x)+i \sin (2 \pi x)=1\}=\mathbb{Z} .
$$

Therefore, the First isomorphism theorem implies that

$$
\mathbb{R} / \mathbb{Z} \cong S^{1} .
$$

(iv) Let G be a group, $H<G$, and $N \triangleleft G$. Then
(a) $H \cap N \triangleleft H$.
(b) $N \triangleleft H N$.
(v) Second Isomorphism Theorem: Let G be a group, $H<G$, and $N \triangleleft G$. Then

$$
H / H \cap N \cong H N / N .
$$

(vi) Third Isomorphism Theorem: Let G be group, and $H, K \triangleleft G$ such that $H<$ K. Then

$$
(G / H) /(K / H) \cong G / K .
$$

(vii) Some applications of the Third isomorphism theorem.
(a) For positive integers ℓ, m, n such that $m \mid \ell$ and $n \mid m$, we know that

$$
\ell \mathbb{Z} \triangleleft n \mathbb{Z}, m \mathbb{Z} \triangleleft n \mathbb{Z} \text { and } \ell \mathbb{Z}<m \mathbb{Z} .
$$

Therefore, the Third Isomorphism Theorem implies that

$$
(n \mathbb{Z} / \ell \mathbb{Z}) /(m \mathbb{Z} / \ell \mathbb{Z}) \cong n \mathbb{Z} / m \mathbb{Z},
$$

or equivalently, we have

$$
\mathbb{Z}_{\ell \mid n} / \mathbb{Z}_{\ell \mid m} \cong \mathbb{Z}_{m / n}
$$

(b) Consider the group $D_{2 n}$, when n is even and $n \geq 4$. Then we know that

$$
\left\langle r^{n / 2}\right\rangle \triangleleft D_{2 n},\langle r\rangle \triangleleft D_{2 n} \text {, and }\left\langle r^{n / 2}\right\rangle\langle\langle r\rangle .
$$

Therefore, the Third isomorphism Theorem implies that

$$
\left(D_{2 n} /\left\langle r^{n / 2}\right\rangle\right) /\left(\langle r\rangle /\left\langle r^{n / 2}\right\rangle\right) \cong D_{2 n} /\langle r\rangle .
$$

(viii) Fourth (or Lattice) Isomorphism Theorem: Let G be a group and let $N \unlhd G$. Then there is a one-to-one correspondence between the set of subgroups of G containing N and the set of subgroups of G / N. In particular, every subgroup of G / N is of the form H / N for some subgroup H of G containing N.

4 Group actions

4.1 Basic definitions and examples

(i) Let G be a group and A be nonempty say. Then an action of G on A, written as $G \curvearrowright A$ is a map

$$
G \times A \rightarrow A:(g, a) \mapsto g \cdot a
$$

satisfying the following conditions
(a) $1 \cdot a=a$, for all $a \in a$, and
(b) $g \cdot(h \cdot a)=(g h) \cdot a$, for all $g, h \in G$ and $a \in A$.
(ii) Examples of group actions:
(a) There is a natural action (denoted by $G \curvearrowright G$) of a group G on itself by left multiplication given by

$$
(g, h) \mapsto g h, \text { for all } g, h \in G .
$$

The permutation representation $\psi_{G \curvearrowright G}: G \rightarrow S(G)$ afforded by this action given by

$$
\psi_{G \cap G}(g)=\varphi_{g}, \text { where } \varphi_{g}(h)=g h, \text { for all } h \in G
$$

is called the left regular representation.
(b) A group G also acts on itself by conjugation (denoted by $G \curvearrowright^{c} G$), which is defined in the following manner

$$
(g, h) \mapsto g h g^{-1}, \text { for all } g, h \in G
$$

and this yields the permutation representation

$$
\psi_{G \cap^{c} G}(g)=\varphi_{g}^{c}, \text { where } \varphi_{g}^{c}(h)=g h g^{-1}, \text { for all } h \in G
$$

(c) Let P_{n} be the regular n-gon imbedded within the closed disk $\{z \in \mathbb{C}$: $|z| \leq 1\} \subset \mathbb{C}$ so that its vertices coincide with the roots of unity. Then $D_{2 n}=\langle r, s\rangle \curvearrowright P_{n}$ and this action if defined as follows for each $z \in P_{n}$:
i. $r \cdot z=e^{i 2 \pi / n} \cdot z$ and
ii. $s \cdot z=\bar{z}$.
(d) The group $\mathbb{Z} \curvearrowright \mathbb{R}$ via translation by an integer, which is formally defined as:

$$
\mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}:(z, x) \mapsto x+z
$$

In a similar manner, we can define the action $\mathbb{Z}^{2} \curvearrowright \mathbb{R}^{2}$.
(iii) For a group G, the set $S(G)=\{f: G \rightarrow G \mid f$ is a bijection $\}$ forms a group under composition.
(iv) Every action $G \curvearrowright A$ induces a homomorphism

$$
\psi_{G \curvearrowright A}: G \rightarrow S(A),
$$

defined by

$$
\psi(g)=\varphi_{g}, \text { where } \varphi_{g}(a)=g \cdot a, \text { for all } a \in A,
$$

which is called the permutation representation induced (or afforded) by the action.
(v) Conversely, given a homomorphism $\psi: G \rightarrow S(A)$, the map

$$
G \times A \rightarrow A:(g, a) \mapsto \psi(g)(a)
$$

defines an action of G on A.
(vi) A group action $G \curvearrowright A$ is said to be faithful if the permutation representation $\psi_{G \curvearrowright A}$ it affords, is a monomorphism.
(vii) Examples (and non-examples) of faithful actions.
(a) The actions in 4 (ii) (a), (c), and (d) above are faithful actions.
(b) The conjugation action $G \curvearrowright^{c} G$ is not in general a faithful action.

4.2 The Orbit-Stabilizer Theorem

(i) Consider an action $G \curvearrowright A$. Then
(a) for each $a \in A$, the set $G_{a}=\{g \in G \mid g \cdot a=a\}$ is called the stabilizer of a under the action.
(b) or each $a \in A$, the set $\mathscr{O}_{a}=\{g \cdot a \mid g \in G\}$ is called the orbit of a under the action.
(c) $\operatorname{ker} \psi_{G \cap A}$ is called kernel of the action, and is also denoted by $\operatorname{Ker}(G \curvearrowright$ A).
(ii) Consider an action $G \curvearrowright A$. Then
(a) $\operatorname{Ker}(G \curvearrowright A) \unlhd G$, and
(b) for each $a \in A, G_{a} \leq G$.
(iii) Consider an action $G \curvearrowright A$.
(a) Then the relation \sim on A defined by

$$
a \sim b \Longleftrightarrow \text { there exists some } g \in G \text { such that } g \cdot a=b
$$

defines an equivalence relation on A.
(b) Moreover, the equivalence classes under \sim are precisely the distinct orbits \mathscr{O}_{a} under the action. Consequently, for any two orbits \mathscr{O}_{a} and \mathscr{O}_{b}, we have that either

$$
\mathscr{O}_{a}=\mathscr{O}_{b} \text { or } \mathscr{O}_{a} \cap \mathscr{O}_{b}=\varnothing
$$

(iv) An action $G \curvearrowright A$ is said to be transitive if there exists some $a \in A$ for which $\mathscr{O}_{a}=A$. This is equivalent to requiring that for an action to be transitive, $\mathscr{O}_{a}=A$, for all $a \in A$.
(v) Orbit-Stabilizer Theorem: Consider an action $G \curvearrowright A$, where $|A|<\infty$. Then for each $a \in A$, we have that

$$
\left[G: G_{a}\right]=\left|\mathscr{O}_{a}\right|
$$

4.3 Applications of the Orbit-Stabilizer Theorem

4.3.1 The Burnside Lemma

(i) Consider an action $G \curvearrowright A$, where $|G|,|A|<\infty$. Then

$$
\left|\mathscr{O}_{a}\right|||G| \text {, for each } a \in A .
$$

(ii) The collection of distinct orbits under an action $G \curvearrowright A$ is defined by:

$$
A / G=\left\{\mathscr{O}_{a}: a \in A\right\} .
$$

(iii) Burnside Lemma: Consider an action $G \curvearrowright A$, where $|G|,|A|<\infty$. Then the number of distinct orbits under the action (denoted by $|A / G|$) is given by

$$
|A / G|=\frac{1}{|G|} \sum_{g \in G}\left|A_{g}\right|,
$$

where $A_{g}=\operatorname{Fix}_{g}(A)=\{a \in A \mid g \cdot a=a\}$.

4.3.2 The action $G \curvearrowright G$

(i) For a group G, consider the self-action $G \curvearrowright G$ by left-multiplication.
(a) $G \curvearrowright G$ is a transitive action,
(b) $\operatorname{Ker}(G \curvearrowright G)=1$, and consequently
(c) $G \xrightarrow{\psi_{G \cap G}} S(G)$.
(ii) Cayley's Thorem: Every group G is isomorphic to a subgroup of $S(G)$. In particular, if $|G|=n$, then G isomorphic to a subgroup of S_{n}.
(iii) Given a group G and $H \leq G$, the self-action $G \curvearrowright G$ induces an action $G \curvearrowright G / H$, which is defined by $\left(g, g^{\prime} H\right) \mapsto\left(g g^{\prime}\right) H$, and this action has the following properties:
(a) It is a transitive action.
(b) Its kernel is the largest normal subgroup of G that is also a subgroup of H, which is given by

$$
\operatorname{Ker}(G \curvearrowright G / H)=\bigcap_{g \in G} g H g^{-1}
$$

(c) $G_{H}=H$ and $\mathscr{O}_{H}=G / H$.
(d) Hence, when $|G / H|<\infty$ and $|G|<\infty$, the Orbit-Stabilizer Theorem yields

$$
[G: H]=|G| /|H|,
$$

which is the Lagrange's Theorem.

4.3.3 The action $G \curvearrowright^{c} G$ and the Class Equation

(i) For a group G, the set

$$
Z(G)=\{g \in G \mid g h=h g, \text { for all } h \in G\}
$$

is called the center of G.
(ii) Let G be a group and $S \subseteq G$.
(a) The set

$$
C_{G}(S)=\{g \in G \mid g s=s g, \text { for all } s \in S\}
$$

is called the centralizer of S in G.
(b) The set

$$
N_{G}(S)=\left\{g \in G \mid g S g^{-1}=S\right\}
$$

is called the the normalizer of H in G.
(iii) Let G be a group and $S \subseteq G$. Then $C_{G}(S) \leq G$ and $N_{G}(S) \leq G$. Furthermore, when $S=\{h\}$, we have that $C_{G}(h)=N_{G}(h)$.
(iv) For a group G, consider the self-action $G \curvearrowright^{c} G$ by conjugation.
(a) Since $\mathscr{O}_{1}=\{1\}, G \curvearrowright^{c} G$ is a non-transitive action.
(b) $\operatorname{Ker}\left(G \frown^{c} G\right)=Z(G)$, and hence $Z(G) \unlhd G$.
(c) For each $h \in G, G_{h}=C_{G}(h)$.
(d) For each $h \in G$, the orbit $\mathscr{O}_{h}=\left\{g h g^{-1} \mid g \in G\right\}$ is called the conjugacy class of h in G (also denoted by \mathscr{C}_{h}).
(v) Let $P(G)$ denote the power set of G. The action $G \curvearrowright^{c} G$ extends to an action $G \curvearrowright^{c} P(G)$ defined by $(g, S) \mapsto g S g^{-1}$. This action has the following properties.
(a) For each $S \in P(G)$, we have

$$
G_{S}=\left\{g \in G \mid g S g^{-1}=S\right\}=N_{G}(S) .
$$

(b) For each $S \in P(G)$, we have

$$
\mathscr{O}_{S}=\left\{g S g^{-1} \mid g \in G\right\}=\mathscr{C}_{S},
$$

the conjugacy class of the set S.
(c) When $|G|<\infty$, we have that $|P(G)|<\infty$, and hence the Orbit-Stabilizer Theorem, yields

$$
\left|\mathscr{C}_{S}\right|=\left[G: N_{G}(S)\right] .
$$

(vi) Class Equation: Let G be a finite group, and let $g_{1}, g_{2}, \ldots, g_{r}$ be representatives of the distinct classes of G not contained in $Z(G)$. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left[G: C_{G}\left(g_{i}\right)\right]
$$

(vii) Let G be a finite group, and p is the smallest prime such that $p \| G \mid$. Then every index p subgroup of G is normal is G.

4.4 Sylow's Theorems

(i) Let p be a prime number. A group G is said to be a p-group if $|G|=p^{k}$ for some postive integer k.
(ii) Example of p groups.
(a) Abelian: $\mathbb{Z}_{p^{k}}$ and \mathbb{Z}_{p}^{k}.
(b) Non-abelian: Q_{8}, A_{3}, and $D_{2 \cdot 2^{k}}$.
(iii) Consider an action $G \curvearrowright A$, where $|G|=p^{n}$ and $|A|<\infty$. Then

$$
|A| \equiv\left|A_{G}\right| \quad(\bmod p)
$$

(iv) Let H be a p-subgroup of a finite group G. Then

$$
\left[N_{G}(H): H\right] \equiv[G: H] \quad(\bmod p)
$$

(v) Cauchy Theorem: Let G be a finite group, and let p be a prime number such that $p||G|$. Then G has an element of order p.
(vi) First Sylow Theorem: Let G be a finite group with $|G|=p^{n} m$, where p is a prime number, and m is a positive integer such that $p \nmid m$. Then
(a) for $1 \leq i \leq n, G$ contains a subgroup of order p^{i}, and
(b) for $1 \leq i<n$, every subgroup of G of order p^{i} is a normal subgroup of a subgroup of G of order p^{i+1}.
(vii) If $|G|=p^{n} m$, where p is a prime number, and m is a positive integer such that $p \nmid m$, then a subgroup of order p^{n} is called a Sylow p-subgroup of G.
(viii) If $|G|=p q$, where p and q are primes, then G has a Sylow p-subgroup H of order p and a Sylow q-subgroup K of order q, and so $G=H K$.
(ix) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are conjugate in G.
(x) If P is a unique Sylow p-subgroup of a group G, then $P \unlhd G$.
(xi) Let P be a Sylow p-subgroup, and Q, a p-subgroup of a group G. Then

$$
N_{G}(P) \cap Q=P \cap Q
$$

(xii) Third Sylow Theorem: Let n_{p} denote the number of Sylow p-subgroups of a group G. Then:
(a) $n_{p} \equiv 1(\bmod p)$ and
(b) for each Sylow p-subgroup P of G, we have $\left[G: N_{G}(P)\right]=n_{p}$. Consequently, $n_{p}| | G \mid$.

4.5 Simple groups

(i) A group G is said to be simple if it has no proper normal subgroups.
(ii) Examples of simple/non-simple groups:
(a) If $|G|=p$, where p is a prime, then G has no proper subgroups, and so G has to be simple.
(b) Let $|G|=p^{k}$, where p is a prime and $k>1$. Then by the First Sylow Theorem, G has a subgroup H of order p^{k-1}. Since $[G: H]=p$, we have that $H \leq G$, and so G is non-simple.
(c) Let $|G|=2 p^{k}$, where p is a prime. Then by the First Sylow Theorem, G has a subgroup H of order p^{k-1}. Since $[G: H]=2$, we have that $H \leq G$, and so G is non-simple.
(d) If $|G|=p q$, where $p<q$ are distinct primes, then G is not simple, as it has a subgroup of order q that has index p in G.
(iii) Let G be any group that has non-prime order less than 60 . Then G is nonsimple.
(iv) The group A_{5} (of order 60) is the simple group of smallest non-prime order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H, consider the cartesian product $G \times H$ with a binary operation given by

$$
\left(g_{1}, h_{2}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right), \text { for all } g_{1}, g_{2} \in G \text { and } h_{1}, h_{2} \in H .
$$

Under this operation, the set $G \times H$ forms a group called the external direct product (or the direct product) of the groups G and H, and is denoted simply as $G \times H$.
(ii) The identity element in $G \times H$ is $(1,1)$ and the inverse of an element $(g, h) \in$ $G \times H$ is given by $\left(g^{-1}, h^{-1}\right)$.
(iii) The notion of a direct of two groups can be extended to define the direct product of n groups $G_{i}, 1 \leq i \leq n$, denoted by

$$
\prod_{i=1}^{n} G_{i}=G_{1} \times G_{2} \times \ldots \times G_{n} .
$$

(iv) The groups G and H inject into the $G \times H$, via the natural monomorphisms

$$
\begin{aligned}
& G \hookrightarrow G \times H: g \mapsto(g, 1) \\
& H \hookrightarrow G \times H: h \mapsto(1, h)
\end{aligned}
$$

(v) For any two groups G and H, the natural homomorphism

$$
G \times H \rightarrow H \times G:(g, h) \mapsto(h, g)
$$

is an isomorphism, and hence we have that

$$
G \times H \cong H \times G .
$$

In other words, up to isomorphism, the direct product of two groups is commutative.
(vi) For any three groups G, H, and K, the natural homomorphism

$$
(G \times H) \times K \rightarrow(G \times H) \times K:((g, h), k) \mapsto(g,(h, k))
$$

is an isomorphism, and hence we have that

$$
G \times(H \times K) \cong(G \times H) \times K
$$

In other words, up to isomorphism, the direct product of three groups is associative.
(vii) A direct product $\prod_{i=1}^{n} G_{i}$ of groups is abelian, if and only if, each component group G_{i} is abelian.
(viii) Let $m, n \geq 2$ be positive integers. Then

$$
\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}
$$

if and only is $\operatorname{gcd}(m, n)=1$.
(ix) Classification of finitely generated abelian groups: Every finitely generated abelian group is isomorphic to a group of the form

$$
\begin{equation*}
\mathbb{Z}^{r} \times \mathbb{Z}_{r_{1}} \times \ldots \times \mathbb{Z}_{r_{k}} \tag{*}
\end{equation*}
$$

where n and the $r_{i} \geq 1$ are positive integers such that $r_{i} \mid r_{i+1}$, for $1 \leq i \leq$ $k-1$.
(x) Let G be a finitely generated abelian group that has a direct product decomposition of the form (${ }^{*}$) above.
(a) The component \mathbb{Z}^{r} is the called free part, and the component $\mathbb{Z}_{r_{1}} \times$ $\ldots \times \mathbb{Z}_{r_{k}}$ is called the torsion part of the direct product decomposition of G.
(b) The integer r is called rank of G.

5.2 Semi-direct products

(i) For a group G, the set

$$
\operatorname{Aut}(G)=\{\varphi: G \rightarrow G \mid \varphi \text { is a isomorphism }\}
$$

forms a group under composition (with identity element $i d_{G}$) called the automorphism group of G.
(ii) For a group $G, \operatorname{Aut}(G) \leq S(G)$.
(iii) Examples of automorphism groups.
(a) $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U_{n}$, the multiplicative group of units modulo n.
(b) $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_{2}$.
(c) $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$.
(iv) Let G, H be groups, and $\psi: G \rightarrow \operatorname{Aut}(H)$ be a homomorphism.
(a) Consider the binary operation \cdot on the set $G \times H$ defined by

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} \psi\left(g_{1}\right)\left(h_{2}\right)\right)
$$

Then ($G \times H, \cdot)$ forms a group called the semi-direct product of the groups G and H with respect to ψ, and is denoted by $G \ltimes_{\psi} H$.
(b) The identity element in $G \ltimes_{\psi} H$ is $(1,1)$ and the inverse of an element $(g, h) \in G \times H$ is given by $\left(g^{-1}, h^{-1}\right)$.
(c) By definition, it follows that $H \triangleleft G \ltimes_{\psi} H$.
(v) A semi-direct product $G \ltimes_{\psi} H$ is abelian if and only if both G and H are abelian, and ψ is trivial.
(vi) Examples of semi-direct products:
(a) If ψ is taken to be the trivial homomorphism (that maps all elements of G to the identity isomorphism $1 \in \operatorname{Aut}(H)$), then

$$
G \ltimes_{\psi} H=G \times H .
$$

Hence, the semi-direct product of groups is a generalization of the direct product.
(b) Let $G=\mathbb{Z}_{m}$ and $H=\mathbb{Z}_{n}$

- Then a non-trivial homomorphism $\psi: G \rightarrow \operatorname{Aut}(H) \cong U_{n}$ exists if and only if

$$
\operatorname{gcd}(m, \phi(n))>1
$$

- Moreover, ψ is completely determined by $\psi(1)$, and so if $\psi(1)=$ $k \in U_{n}$, then k has to satisfy

$$
k^{m} \equiv 1 \quad(\bmod n) .
$$

- Hence, $\mathbb{Z}_{m} \ltimes_{\psi} \mathbb{Z}_{n}$ is often abbreviated as $\mathbb{Z}_{n} \ltimes_{k} \mathbb{Z}_{n}$.
- In particular, consider the case when $m=2$ in example (a) above with the homomorphism ψ determined by $\psi(1)=-1 \epsilon$ $\operatorname{Aut}(H)$. (Note that -1 here denotes the isomoprhism $h \stackrel{-1}{\longrightarrow}$ $h^{-1}=-h$, for each $h \in H$.) Representing the dihedral group as before, that is,

$$
D_{2 n}=\langle r, s\rangle=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

we have that

$$
\mathbb{Z}_{2} \ltimes{ }_{-1} \mathbb{Z}_{n} \cong D_{2 n}
$$

via the isomorphism

$$
(i, j) \mapsto s^{i} r^{j}
$$

(c) If $G=H=\mathbb{Z}$, there exists only non-trivial semi-direct product $\mathbb{Z} \ltimes_{\psi} \mathbb{Z}$, which occurs when

$$
\psi: \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_{2}: 1 \stackrel{\psi}{\rightarrow}[1] .
$$

(d) Consider group $S\left(\mathbb{R}^{2}\right)$ of symmetries (or isometries) of the plane \mathbb{R}^{2}. Then subgroup of translations by a vector (in \mathbb{R}^{2}) is a normal subgroup of $S\left(\mathbb{R}^{2}\right)$ that is isomorphic to \mathbb{R}^{2}. Thus, we have

$$
S\left(\mathbb{R}^{2}\right) \cong \mathrm{O}(2, \mathbb{R}) \ltimes_{\psi} \mathbb{R}^{2},
$$

where $\psi: \mathrm{O}(2, \mathbb{R}) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{2}\right)$ is defined by $\psi(A)(\nu)=A v$.
(e) The special real orthogonal group $H=\operatorname{SO}(n, \mathbb{R})$ is a normal subgroup of the real orthogonal group $G=\mathrm{O}(n, \mathbb{R})$ since $[G: H]=2$. Consider a subgroup $\{1, R\}<\mathrm{O}(n, \mathbb{R})$, where R is a reflection that preserves the origin. Then it follows that

$$
\mathrm{O}(n, \mathbb{R}) \cong\{1, R\} \ltimes_{\psi} \mathrm{SO}(n, \mathbb{R}) \cong \mathbb{Z}_{2} \ltimes_{\psi} \mathrm{SO}(n, \mathbb{R}),
$$

where $\Psi:\{1, R\} \rightarrow \operatorname{Aut}(\mathrm{SO}(n, \mathbb{R}))$ is defined by $\left.\psi(R)(A)=R A R^{-1}\right)$.
(f) For $n \geq 3$, the alternating group $H=A_{n}$ is a normal subgroup of the symmetric group $G=S_{n}$ since $[G: H]=2$. Consider a subgroup $\{1, \tau\}<S_{n}$, where $\tau \in S_{n} \backslash A_{n}$ and $|\tau|=2$. Then it follows that

$$
S_{n} \cong\{1, \tau\} \ltimes_{\psi} A_{n} \cong \mathbb{Z}_{2} \ltimes_{\psi} A_{n},
$$

where $\Psi:\{1, \tau\} \rightarrow A_{n}$ is defined by $\psi(\tau)(\sigma)=\tau \sigma \tau^{-1}$.

5.3 Group Extensions

(i) A sequence of groups G_{i} and homomorphisms φ_{i} of the form

$$
\ldots \rightarrow G_{n-1} \xrightarrow{\varphi_{n-1}} G_{n} \xrightarrow{\varphi_{n}} G_{n+1} \rightarrow \ldots
$$

is called an exact sequence if $\operatorname{ker} \varphi_{i+1}=\operatorname{Im} \varphi_{i}$, for all i.
(ii) (a) A short exact sequence is an exact sequence of the form

$$
1 \xrightarrow{\varphi_{0}} N \xrightarrow{\varphi_{1}} G \xrightarrow{\varphi_{2}} H \xrightarrow{\varphi_{4}} 1,
$$

where 1 denotes the trivial group, and φ_{0}, φ_{4} are trivial homomorhisms.
(b) The exactness of the sequence above implies that φ_{1} is injective and and φ_{2} is surjective.
(iii) If G, N and H are group, then G is called an extension of H by N if there exists a short exact sequence of the form

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

(iv) Examples of group extensions:
(a) For any group G, and $N \unlhd G$, there is a natural short exact sequence given by

$$
1 \rightarrow N \hookrightarrow G \xrightarrow{g \mapsto g N} G / N \rightarrow 1 .
$$

Hence, G is an extension of G / N by N.
(b) A semi-direct product $H \ltimes_{\psi} N$ of groups N and H is an extension of H by N by virtue of the short exact sequence:

$$
1 \rightarrow N \xrightarrow{n \mapsto(n, 0)} H \ltimes_{\psi} N \xrightarrow{(h, n) \mapsto h} H \rightarrow 1 .
$$

(c) A group G that is an extension of \mathbb{Z}_{m} by \mathbb{Z}_{n} is called a metacyclic group.

- $D_{2 n}$ is a metacyclic group, which is an extension of \mathbb{Z}_{2} by \mathbb{Z}_{n} via the short exact sequence

$$
1 \rightarrow\langle r\rangle \hookrightarrow D_{2 n} \rightarrow D_{2 n} /\langle r\rangle \rightarrow 1
$$

- Q_{8} is a metacyclic group that is an extension of \mathbb{Z}_{2} by \mathbb{Z}_{4} via the short exact sequence

$$
1 \rightarrow\langle x\rangle \hookrightarrow Q_{8} \rightarrow Q_{8} /\langle x\rangle \rightarrow 1,
$$

where $x \in\{i, j, k\}$. In fact, Q_{8} is also an extension of the Klein 4 -group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by \mathbb{Z}_{2} via the short exact sequence

$$
1 \rightarrow Z\left(Q_{8}\right) \hookrightarrow Q_{8} \rightarrow Q_{8} / Z\left(Q_{8}\right) \rightarrow 1
$$

(v) A short exact sequence

$$
1 \rightarrow N \xrightarrow{\varphi_{1}} G \xrightarrow{\varphi_{2}} H \rightarrow 1
$$

splits if there exists a homomorphism $\bar{\varphi}_{2}: H \rightarrow G$ such that $\varphi_{2} \circ \bar{\varphi}_{2}=i d_{H}$.
(vi) A short exact sequence

$$
1 \rightarrow N \xrightarrow{\varphi_{1}} G \xrightarrow{\varphi_{2}} H \rightarrow 1
$$

splits if and only if $G \cong H \ltimes_{\psi} N$.
(vii) Examples of split and non-split short exact sequences.
(a) The short exact sequence

$$
1 \rightarrow N \xrightarrow{n \mapsto(n, 0)} H \ltimes_{\psi} N \xrightarrow{(h, n) \stackrel{\varphi_{2}}{h} h} H \rightarrow 1
$$

splits as the homomorphism $\bar{\varphi}_{2}: H \rightarrow H \ltimes_{\psi} N: h \xrightarrow{\bar{\varphi}_{2}}(h, 0)$ satisfies $\varphi_{2} \circ \bar{\varphi}_{2}=i d_{H}$. In particular, the short exact sequence

$$
1 \rightarrow\langle r\rangle \hookrightarrow D_{2 n} \rightarrow D_{2 n} /\langle r\rangle \rightarrow 1
$$

splits.
(b) The short exact sequence

$$
1 \rightarrow\langle x\rangle \hookrightarrow Q_{8} \rightarrow Q_{8} /\langle x\rangle \rightarrow 1,
$$

where $x \in\{i, j, k\}$, does not split, whereas the short exact sequence

$$
1 \rightarrow Z\left(Q_{8}\right) \hookrightarrow Q_{8} \rightarrow Q_{8} / Z\left(Q_{8}\right) \rightarrow 1
$$

splits.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to isomorphism) of orders ≤ 15.

Order	Abelian groups	Non-abelian groups
1	\mathbb{Z}_{1}	None
2	\mathbb{Z}_{2}	None
3	\mathbb{Z}_{3}	None
4	$\mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	None
5	\mathbb{Z}_{5}	None
6	\mathbb{Z}_{6}	S_{3}
7	\mathbb{Z}_{7}	None
8	$\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	D_{8}, Q_{8}
9	$\mathbb{Z}_{9}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$	None
10	\mathbb{Z}_{10}	D_{10}
11	\mathbb{Z}_{11}	None
12	$\mathbb{Z}_{12}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$	$A_{4}, D_{12}, \mathbb{Z}_{4} \ltimes \mathbb{Z}_{3}$
13	\mathbb{Z}_{13}	None
14	\mathbb{Z}_{14}	D_{14}
15	\mathbb{Z}_{15}	None

7 Solvable groups

7.1 Normal and composition series

(i) Let G be a group.
(a) A series of subgroups N_{i}, for $1 \leq i \leq k$ satisfying

$$
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G
$$

is called a subnormal series of G.
(b) A subnormal series as above in which each $N_{i} \unlhd G$ is called a normal series of G.
(c) If in a subnormal series

$$
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G,
$$

the quotient groups N_{i+1} / N_{i} are simple for $1 \leq i \leq k-1$, then the normal series is called a composition series of G. The quotient groups N_{i+1} / N_{i} are called composition factors.
(ii) Examples of composition and normal series.
(a) The following series of $D_{2 n}$

$$
1 \triangleleft\langle r\rangle \triangleleft D_{2 n}
$$

is a normal series for all n, and is a composition series when n is prime.
(b) The series of S_{n}

$$
1 \unlhd A_{n} \unlhd S_{n}
$$

is a composition series of S_{n} for $n=3$ and for $n \geq 5$ (since A_{n} is simple.) However, for $n=4$ it is simply a normal series of S_{4}.
(c) Every group G of order p^{k}, for p prime and $k>1$ admits a composition series of the form

$$
1=H_{0} \unlhd H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k-1} \unlhd H_{k}=G
$$

where H_{i} is a group of order p^{i} whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems.
(iii) Let G be a group and $A, B \triangleleft G$ with $A \neq B$ such that both G / A and G / B are simple. Then $G / A \cong B / A \cap B$ and $G / B \cong A / A \cap B$.
(iv) Jordan-Holder Theorem. Let G be a finite non-trivial group. Then:
(a) G has a composition series, and
(b) if

$$
\begin{gathered}
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{r-1} \unlhd N_{r}=G \\
\quad \text { and } \\
1=M_{0} \unlhd M_{1} \unlhd \ldots \unlhd M_{s-1} \unlhd M_{s}=G
\end{gathered}
$$

are two composition series' for G, then $r=s$, and there exists a permutation π of $\{1,2, \ldots, r\}$ such that

$$
M_{\pi(i)+1} / M_{\pi(i)} \cong N_{i+1} / N_{i}, \text { for } 1 \leq i \leq r-1 .
$$

7.2 Derived series and solvable groups

(i) The subgroup $[G, G]=\langle S\rangle$ of a group G generated by elements in the set

$$
S=\left\{g h g^{-1} h^{-1} \mid g, h \in G\right\}
$$

is called the commutator subgroup or the derived subgroup of G. It is also denoted by G^{\prime} or $G^{(1)}$.
(ii) Let G be a group. Then:
(a) $G^{(1)} \unlhd G$.
(b) $G / G^{(1)}$ is an abelian group called the abelianization of G.
(c) G is abelain if and only if $G^{(1)}=1$.
(d) Given $N \unlhd G, G / N$ is abelian if and only if $[G, G] \leq N$.
(iii) For $i \geq 0$, the $i^{\text {th }}$ commutator subgroup (or the $i^{\text {th }}$ derived group) $G^{(i)}$ of a group G is defined as follows:
(a) $G^{(0)}:=G$, and
(b) $G^{(i)}:=\left[G^{(i-1)}, G^{(i-1)}\right]$, for $i \geq 1$.
(iv) The derived series (or the commutator series) of a group G is the series

$$
\ldots G^{(i+1)} \unlhd G^{(i)} \unlhd \ldots \unlhd G^{(1)} \unlhd G^{(0)}=G .
$$

(v) A group G is said to be solvable if it has a subnormal series

$$
1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{k-1} \unlhd N_{k}=G
$$

such that N_{i+1} / N_{i} is abelian, for $1 \leq i \leq k-1$.
(vi) Examples of solvable and non-solvable groups.
(a) The group S_{3} is solvable, as it has a normal series

$$
1 \unlhd A_{3} \unlhd S_{3},
$$

where $A_{3} \cong \mathbb{Z}_{3}$ and $S_{3} / A_{3} \cong \mathbb{Z}_{2}$.
(b) The Jordan-Holder Theorem asserts that S_{5} has a composition series given by

$$
1 \unlhd A_{5} \unlhd S_{5}
$$

that is unique up to permutation of its composition factors, and these factors are isomorphic to A_{5} and \mathbb{Z}_{2}. Since A_{5} is a non-abelian simple group and $\left[S_{5}: A_{5}\right]=2, S_{5}$ is not solvable.
(c) Abelian groups are solvable, as all of their subgroups are normal and all quotient groups formed using these subgroups will also be abelian.
(d) A group G of order p^{k}, for p prime and $k>1$ admits a normal series of the form

$$
1=H_{0} \unlhd H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k-1} \unlhd H_{k}=G,
$$

where H_{i} is a group of order p^{i} whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems. Since $H_{i+1} / H_{i} \cong \mathbb{Z}_{p}$, G is solvable.
(e) Consider a group G such that $|G|=p q$, where p and q are distinct primes with $p>q$. Then by the Sylow's theorems, G has a unique Sylow p-subgroup P of order p, which implies that $P \triangleleft G$. Furthermore, as $|G / P|=q, G / P$ is abelian, and so we have subnormal series of G with abelian factors given by:

$$
1 \triangleleft P \triangleleft G .
$$

Therefore, G is solvable.
(vii) A subgroup of a solvable group is solvable.
(viii) A group G is solvable if and only if there exists $N \unlhd G$ such that both N and G / N are solvable.
(ix) A group G is solvable if and only if there exists and integer $k \geq 0$ such that $G^{(k)}=1$.
(x) For a solvable group G, smallest integer $k \geq 0$ such that $G^{(k)}=1$ is called the derived length or the solvable length of G.
(xi) Properties of the derived length.
(a) A group G has derived length 0 if and only if G is trivial.
(b) A group G has derived length 1 if and only if G is abelian.
(c) A group has derived length at most two if and only it has an abelian normal subgroup such that the quotient group is also an abelian group.
(xii) Let G be a finite group. Here are some known non-trivial results on solvable groups.
(a) (Philip-Hall) G is solvable if and only if for every divisor d of $|G|$ such that $\operatorname{gcd}(d,|G| / d)=1, G$ has a subgroup of order d.
(b) (Burnside) If $|G|=p^{a} q^{b}$, where p and q are primes, then G is solvable.
(c) (Feit-Thompson Theorem) If $|G|$ is odd, then G is solvable.
(d) (Thompson) If for for every pair of elements $x, y \in G,\langle x, y\rangle$ is a solvable group, then G is solvable.

