MTH 301: Group Theory Semester 1, 2023-24

November 8, 2023

Contents

1	Pre	Preliminaries 3					
	1.1	Basic definitions and examples	3				
	1.2	The cyclic group	4				
	1.3	The symmetric group	5				
		1.3.1 Basic definitions and examples	5				
		1.3.2 <i>k</i> -cycles	7				
		1.3.3 Parity of a permutation	8				
		1.3.4 Conjugacy classes of permutations	8				
2	Subgroups 9						
	2.1	Basic definitions and examples	9				
	2.2	Cosets and Lagrange's Theorem	10				
	2.3	Normal subgroups	12				
3	Homomorphisms and isomorphisms 12						
	3.1	Homomorphisms	12				
	3.2	The Isomorphism Theorems	14				
4	Gro	up actions	16				
	4.1	Basic definitions and examples	16				
	4.2	The Orbit-Stabilizer Theorem	18				
	4.3	Applications of the Orbit-Stabilizer Theorem	19				
		4.3.1 The Burnside Lemma	19				
		4.3.2 The action $G \cap G$	19				

		4.3.3 The action $G \curvearrowright^c G$ and the Class Equation	20		
	4.4	Sylow's Theorems	21		
	4.5	Simple groups	22		
5	ni-direct products and group extensions	23			
	5.1	Direct products	23		
	5.2	Semi-direct products	25		
		Group Extensions			
6	Classification of groups up to order 15				
7	' Solvable groups				
	7.1	Normal and composition series	29		
		Derived series and solvable groups			

1 Preliminaries

1.1 Basic definitions and examples

- (i) (a) A group (G, \cdot) is a nonempty set *G* with a binary operation \cdot satisfying the properties:
 - (a) (Closure property) For any $a, b \in G$, we have $a \cdot b \in G$.
 - (b) (Associativity) For any $a, b, c \in G$, we have

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

(c) (Existence of identity) There exists an element $e \in g$ called the *identity element* such that

$$a \cdot e = a = e \cdot a$$
,

for any $a \in G$.

(d) (Existence of inverse) For each $a \in G$, there exists an $a^{-1} \in G$ such that

$$a \cdot a^{-1} = e = a^{-1} \cdot a.$$

- (b) In a group (G, \cdot) as above, the following properties hold:
 - (a) (Right cancellation law) For $a, b, c \in G$, if $a \cdot c = b \cdot c$, then a = b.
 - (b) (Left cancellation law) For $a, b, c \in G$, if $c \cdot a = c \cdot b$, then a = b.
 - (c) The identity *e* is unique.
 - (d) Every element $a \in G$ has a unique inverse a^{-1} .
- (ii) Let *G* be a group.
 - (a) *G* is a said to be *finite* if the cardinality of the set *G* is finite. Otherwise, *G* is said to be *infinite*.
 - (b) The *order* of a finite group (denoted by |*G*|) is the number of elements in *G*.
- (iii) Examples of groups:
 - (a) Additive groups: $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, and $M_n((F)$, for $F = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} .

- (b) Multiplicative groups $(\mathbb{Q}^{\times}, \cdot)$, $(\mathbb{R}^{\times}, \cdot)$, $(\mathbb{C}^{\times}, \cdot)$, and GL(n, X), for $X = \mathbb{Q}$, \mathbb{R} , and \mathbb{C} .
- (c) The Dihedral group D_{2n} the group of symmetries of a regular *n*-gon.
- (iv) Let *G* be group and $S \subset G$. Then *S* is a *generating set for G* (denoted by $G = \langle S \rangle$) if every element in *G* can be expressed as a finite product of elements in *S* and their inverses.
- (v) The order of an element $g \in G$ (denoted by |g|) is the smallest positive integer *m* such that $g^m = 1$. If such an *m* does not exist for a given $g \in G$, then *g* is said to be of *infinite order* in *G*.
- (vi) Let *G* be a group, let $g \in G$ with |g| = n. Then

$$|g^k| = \frac{n}{\gcd(k, n)}$$

- (vii) A group *G* is said to be *abelian* if gh = hg for all $g, h \in G$.
- (viii) Examples (non-examples) of abelian groups.
 - (a) The groups in Examples 1.1 (iii)(a) are abelian groups.
 - (b) The matrix groups in Examples 1.1 (iii)(b) and the group in (c) are non-abelian groups.

1.2 The cyclic group

- (i) A group *G* is said to be *cyclic*, if there exists a $g \in G$ such that $G = \langle g \rangle$. In other words, *G* is cyclic, if its generated by a single element.
- (ii) Let $G = \langle g \rangle$ be a cyclic group.
 - (a) If *G* is of order *n* (denoted by C_n), then

$$C_n = \{1, g, g^2, \dots, g^{n-1}\}.$$

(b) If *G* is of infinite order, then

$$G = \{1, g^{\pm 1}, g^{\pm 2}, \ldots\}.$$

(iii) Realizing C_n as the multiplicative group of complex n^{th} roots unity.

(iv) The group $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$ of residue classes modulo *n* under +, where

$$[i] = \{nk + i \mid k \in \mathbb{Z}\}$$

- (v) Using the association $[k] \leftrightarrow e^{i2\pi k/n}$, for $0 \le k \le n-1$, we can identify \mathbb{Z}_n with C_n .
- (vi) Let $G = \langle g \rangle$ be a cyclic group.
 - (a) Then *G* is abelian.
 - (b) If $H \leq \langle g \rangle$, then *H* is also cyclic.
 - (c) If |G| = n, then it has a unique cyclic subgroup ⟨g^{n/d}⟩ of order d for divisor d of n.

1.3 The symmetric group

1.3.1 Basic definitions and examples

(i) Let *X* be a nonempty set. Then the set of permutations (or self-bijections) of *X* defined by

$$S(X) := \{f : X \to X : f \text{ is a bijection}\}\$$

forms a group under composition called the *symmetric group of X*.

- (ii) When |X| = n, without loss of generality, we take $X = \{1, 2, ..., n\}$, and we denote the group S(X) simply by S_n . The group S_n , of order n!, is called the *symmetric group (or the permutation group) on n letters*.
- (iii) Examples of symmetric groups.
 - (a) $S_2 \cong \mathbb{Z}_2$.
 - (b) Since each symmetry of a regular *n*-gon induces a permutation of its *n* vertices, we have $S_3 \cong D_6$ and in general, $D_{2n} < S_n$ for $n \ge 4$.
 - (c) For $n \ge 4$, S_n is a non-abelian group.
 - (d) For any group G, Aut(G) < S(G), since each automorphism is a bijective map.

(e) Given any group *G* and fixed $g \in G$, consider $\varphi_g : G \to G$ defined by $\varphi_g(h) = gh$, for all $h \in G$ (i.e., left multiplication by the element *g*). Then it is apparent that $\varphi_g \in S(G)$, and consequently, the map

$$\psi: G \to S(G): g \xrightarrow{\psi} \varphi_g$$

is a monomorphism. In particular, if |G| = n, then *G* imbeds into S_n (i.e. $G \hookrightarrow S_n$).

(iv) A typical element $\sigma \in S_n$ is a bijection $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$, so we often denote such a σ by

$$\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

To further simplify notation for σ , we only list the values of σ on the subset $\{i \in \{1, 2, ..., n\} : \sigma(i) \neq i\}$. For example, the permutation $\sigma \in S_5$ given by

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$

is simply written as

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

(v) A product $\sigma_1 \sigma_2$ of two permutations $\sigma_1, \sigma_2 \in S_n$ is defined as the permutation

$$\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ (\sigma_1 \circ \sigma_2)(1) & (\sigma_1 \circ \sigma_2)(2) & \dots & (\sigma_1 \circ \sigma_2)(n-1) & (\sigma_1 \circ \sigma_2)(n) \end{pmatrix}.$$

(vi) The *support* of a permutation $\sigma \in S_n$ is defined by

$$\operatorname{supp}(\sigma) := \{i \in \{1, \dots, n\} : \sigma(i) \neq i\}.$$

(vii) Two permutations $\sigma_1, \sigma_2 \in S_n$ are said to be *disjoint* if

$$\operatorname{supp}(\sigma_1) \cap \operatorname{supp}(\sigma_2) = \emptyset.$$

(viii) Any two disjoint permutations in S_n commute.

1.3.2 *k*-cycles

(i) A *k*-cycle in S_n is a permutation of the form

$$\begin{pmatrix} i_1 & i_2 & \dots & i_{k-1} & i_k \\ i_2 & i_3 & \dots & i_k & i_1 \end{pmatrix}$$
,

where $1 \le k \le n$. A *k*-cycle as above is often denoted by

$$(i_1 i_2 \dots i_k).$$

A 2-cycle in S_n is a called a *transposition (or an inversion)*.

- (ii) Consider the *k*-cycle $\sigma = (i_1 i_2 \dots i_k)$ in S_n . Then we have:
 - (a)

$$\sigma = (i_1 \sigma(i_1) \sigma^2(i_1) \dots \sigma^{k-1}(i_1)),$$
 and

- (b) $o(\sigma) = k$.
- (iii) Example of *k*-cycles.
 - (a) The permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \in S_5$$

is a 3-cycle given by (123).

(b) The permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \in S_4$$

is a 2-cycle (transposition) given by (23).

(iv) Two cycles $(i_1 i_2 \dots i_k), (j_1 j_2 \dots j_\ell) \in S_n$ commute if

$$\{i_1,\ldots,i_k\}\cap\{j_1,\ldots,j_\ell\}=\emptyset.$$

(v) Every *k*-cycle is a product of no less than k-1 transpositions. In particular, for a *k*-cycle $(i_1 i_2 \dots i_k) \in S_n$, we have

$$(i_1 i_2 \dots i_k) = (i_1 i_k)(i_1 i_{k-1}) \dots (i_1 i_2).$$

(vi) Every permutation $\sigma \in S_n$ can be expressed uniquely as a product of disjoint cycles. This is called the *unique cycle decomposition* of the permutation σ .

1.3.3 Parity of a permutation

(i) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_n$ is given by

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_{k_{\sigma}},$$

where each σ_i is an m_i -cycle. Then we define

$$N(\sigma) := \sum_{i=1}^{k_{\sigma}} (m_i - 1).$$

(ii) The *sign (or parity)* of a permutation $\sigma \in S_n$ is defined by

$$\operatorname{sgn}(\sigma) := (-1)^{N(\sigma)}$$

- (iii) A permutation $\sigma \in S_n$ is called an:
 - (a) *even permutation*, if $sgn(\sigma) = 1$.
 - (b) *odd permutation*, if $sgn(\sigma) = -1$.

(iv) Let $A_n = \{ \sigma \in S_n : \text{sgn} = 1 \}$. For $n \ge 2$, the map

$$\tau: S_n \to \{\pm 1\} (= \mathbb{Z}_2) : \sigma \stackrel{\iota}{\mapsto} \operatorname{sgn}(\sigma)$$

is an epimorphism with ker $\tau = A_n$. Thus, we have

$$S_n/A_n \cong \mathbb{Z}_2.$$

Consequently, $A_n \triangleleft S_n$ and $[S_n : A_n] = 2$. The group A_n consisting of the even permutations in S_n is called the *alternating group on n letters*.

1.3.4 Conjugacy classes of permutations

- (i) Let *G* be a nontrivial group. Two elements $g, h \in G$ are said to be *conjugate in G* if there exists $x \in G$ such that $g = xhx^{-1}$.
- (ii) The relation \sim_c on *G* given by

$$g \sim_c h \iff g$$
 and h are conjugate

defines an equivalence relation on *G*. Each equivalence class (denoted by $[g]_c$) induced by the relation \sim_c is called a *conjugacy class of G*.

- (iii) A *partition of a positive integer n* is a way of writing *n* as a sum of positive integers, up to reordering of summands. For example, the partitions of 4 are:
 - (a) 1+1+1+1,
 - (b) 2+1+1,
 - (c) 3+1,
 - (d) 2+2, and
 - (e) 4.
- (iv) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_n$ is given by

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_{k_\sigma},$$

where each σ_i is an m_i -cycle. Then:

- (a) $o(\sigma) = \text{lcm}(m_1, m_2, ..., m_{k_{\sigma}}).$
- (b) As $\sum_{i=1}^{\kappa_{\sigma}} m_i = n$, this decomposition induces a partition P_{σ} of the integer *n*.
- (c) Given two permutations $\sigma_1, \sigma_2 \in S_n$,

$$[\sigma_1]_c = [\sigma_2]_c \iff P_{\sigma_1} = P_{\sigma_2}.$$

Consequently, the number of distinct conjugacy classes of S_n is precisely the number of partitions of n.

2 Subgroups

2.1 Basic definitions and examples

- (i) A subset *H* of a group *G* is called a *subgroup* of *G* (in symbols $H \le G$) if *H* forms a group under the operation in *G*.
- (ii) Let *H* be a subgroup *H* of a group *G*. Then *H* is said to be:
 - (a) *proper* subgroup of *G* (in symbols H < G) if $H \neq G$.
 - (b) *trivial* subgroup if $H = \{1\}$.

- (c) *nontrivial* subgroup of *G* if $H \neq \{1\}$.
- (iii) **Subgroup Criterion.** Let *G* be a group. Then $H \le G$ if and only if for every $a, b \in H, ab^{-1} \in H$.
- (iv) Examples of subgroups:
 - (a) $n\mathbb{Z} < \mathbb{Z}$, for $n \ge 2$.
 - (b) $D_{2n} < S_n$, for $n \ge 3$.
 - (c) $A_n < S_n$, for $n \ge 3$.
 - (d) $C_n < \mathbb{C}^{\times}$.
 - (e) For $n \ge 2$, *special linear group* $SL(n, F) = \{A \in GL(n, F) | det(A) = 1\}$ is a subgroup of GL(n, F) when $F = \mathbb{R}$, \mathbb{Q} , or \mathbb{C} .
 - (f) For $n \ge 2$, $SL(n, \mathbb{Q}) < SL(n, \mathbb{R}) < SL(n, \mathbb{C})$.
 - (g) For $n \ge 2$, $\operatorname{GL}(n, \mathbb{Q}) < \operatorname{GL}(n, \mathbb{R}) < \operatorname{GL}(n, \mathbb{C})$.

2.2 Cosets and Lagrange's Theorem

(i) Let *G* be a group and $H \leq G$. Then the relation \sim_H on *G* defined by

$$x \sim_H y \iff x y^{-1} \in H$$

is an equivalence relation.

(ii) Let *G* be a group and $H \le G$. Then a *left coset of H in G* is given by

$$gH = \{gh \mid h \in H\},\$$

and a *right coset of H in G* is given by

$$Hg = \{hg \mid h \in H\}.$$

(iii) Let *G* be a group and $H \leq G$. Then

$$gH = \{g' \in G \mid g' \sim_H g\}.$$

(iv) Let *G* be a group and $H \le G$. Then there exists a bijective correspondence between:

- (a) g_1H and g_2H , for any $g_1, g_2 \in H$, and
- (b) gH and Hg, for any $g \in G$.
- (v) We define $G/H := \{gH | g \in G\}$ and $H \setminus G := \{Hg | g \in G\}$.
- (vi) Let *G* be a group and $H \le G$. Then there is a bijective correspondence between G/H and $H \setminus G$.
- (vii) The number of distinct left (or right) cosets of subgroup *H* of *G* is called the *index of H in G*, which is denoted by *G* : *H*]. In other words,

$$[G:H] = |G/H| = |H \setminus G|.$$

Consequently, for a finite group *G* we have

$$|G| = [G:H] \cdot |H|.$$

- (viii) *Lagrange's Theorem.* Let *G* be a finite group and $H \le G$. Then |H| ||G|.
- (ix) The *Euler totient function* is defined by:

$$\phi(n) = |\{k \in \mathbb{Z}^+ | k < n \text{ and } gcd(k, n) = 1\}|.$$

- (x) The multiplicative group $U_n = \{[k] \in \mathbb{Z}_n | \gcd(k, n) = 1\}$ is called the *group* of units modulo *n*. Note that $|U_n| = \phi(n)$.
- (xi) *Euler's Theorem.* If *a* and *n* are positive integers such that gcd(a, n) = 1, then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

(xii) *Fermat's Theorem.* If *p* is a prime number and *a* is a positive integer, then

$$a^p \equiv a \pmod{p}$$
.

(xiii) Let *G* be a group and $H, K \leq G$. Then:

- (a) $HK \le G$ iff HK = KH,
- (b) $H \cap K \le G$, and (c) If $|H|, |K| < \infty$, then $|HK| = \frac{|H||K|}{|H \cap K|}$.

2.3 Normal subgroups

- (i) Let *G* be a group and $H \le G$. Then *H* is said to be a *normal subgroup of G* (in symbols $H \le G$ and $H \lhd G$, if *H* is proper) if $gNg^{-1} \subset N$, for all $g \in G$.
- (ii) Examples of normal subgroups:
 - (a) $m\mathbb{Z} \trianglelefteq \mathbb{Z}$, for all $m \in \mathbb{Z}$
 - (b) $A_n \triangleleft S_n$, for $n \ge 3$.
 - (c) For $n \ge 2$, $SL(n, X) \triangleleft GL(n, X)$, for $X = \mathbb{Q}, \mathbb{R}$, or \mathbb{C} .
 - (d) $C_n \lhd \mathbb{C}^{\times}$, for $n \ge 2$.
- (iii) The *G* be a group, and $N \leq G$. Then the following statements are equivalent
 - (a) $N \leq G$.
 - (b) $gNg^{-1} = N$, for all $g \in G$.
 - (c) gN = Ng, for all $g \in G$.
 - (d) (gN)(hN) = ghN, for all $g, h \in G$.
- (iv) Let *G* be a group and $N \trianglelefteq G$. Then G/N forms a group under the operation $(gN) \cdot (hN) = ghN$.
- (v) Let *G* be a group, and $H \le G$ such that [G: H] = 2. Then $H \lhd G$.
- (vi) Let *G* be group, $H \leq G$, and $N \leq G$. Then
 - (a) the *internal direct product* $NH = \{nh : n \in N, h \in H\} \le G$
 - (b) $N \cap H \trianglelefteq H$.
 - (c) $N \leq NH$.

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let *G*, *H* be group, and $\varphi : G \to H$ be a map. Then φ is said to be a *homo-morphism* if

$$\varphi(gh) = \varphi(g)\varphi(h),$$

for all $g, h \in G$.

- (ii) Examples of homomorphisms:
 - (a) The *trivial homomophism* φ : $G \rightarrow H$ given by $\varphi(x) = 1$, for all $x \in G$.
 - (b) The *identity homomorphism* $i : G \to G$ given by i(g) = g, for all $g \in G$.
 - (c) The map $\varphi : \mathbb{Z} \to \mathbb{Z}$ defined by $\varphi(x) = nx$ for any $n \in \mathbb{Z}$.
 - (d) The map $\varphi_n : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\varphi_n(x) = [x]$.
 - (e) The determinant map $\text{Det}: \text{GL}(n, \mathbb{C}) \to \mathbb{C}^{\times}$.
 - (f) The sign map $\tau : S_n \to \{\pm 1\}$ defined by $\tau(\sigma) = (-1)^{n(\sigma)}$, where if σ is expressed as product of transpositions, $n(\sigma)$ is the number of transpositions appearing in the product. In other words,

$$\tau(\sigma) = \begin{cases} 1, & \text{if } \sigma \in A_n, and \\ -1, & \text{otherwise.} \end{cases}$$

- (iii) Let φ : $G \rightarrow H$ be a homomorphism.
 - (a) If φ is injective, then it is called a *monomorphism*.
 - (b) If φ is surjective, then it is called an *epimorphism*.
- (iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d) and (f) are epimorphisms.
- (v) Let φ : $G \rightarrow H$ be a homomorphism. Then:
 - (a) $\varphi(1) = 1$ and
 - (b) $\varphi(g^{-1}) = \varphi(g)^{-1}$, for all $g \in G$.
- (vi) Let φ : $G \rightarrow H$ be a homomorphism. Then:
 - (a) The set ker $\varphi = \{g \in G : \varphi(g) = 1\}$ is called the *kernel of* φ .
 - (b) The set $\operatorname{Im} \varphi = \{\varphi(g) : g \in G\}$ is called the *image of* φ .
- (vii) Let φ : $G \rightarrow H$ be a homomorphism. Then:
 - (a) ker $\varphi \leq G$.
 - (b) $\operatorname{Im} \varphi \leq H$.
- (viii) A homomorphism $\varphi : G \to H$ is said to be *order-preserving* if $|g| = |\varphi(g)|$, for every $g \in G$ of finite order.

- (ix) Let $\varphi : G \to H$ be a homomorphism. Then the following statements are equivalent.
 - (a) φ is a monomorphism.
 - (b) $G \cong \operatorname{Im} \varphi$.
 - (c) ker $\varphi = \{1\}$.
 - (d) φ is order-preserving

3.2 The Isomorphism Theorems

- (i) Let *G* be a group, and $N \lhd G$. Then the quotient map $q: G \rightarrow G/N$ given by q(g) = gN is an epimorphism.
- (ii) *First Isomorphism Theorem:* Let *G*, *H* be groups, and $\varphi : G \to H$ is a homomorphism. Then

$$G/\ker\varphi \cong \operatorname{Im}\varphi.$$

In particular, if φ is onto, then

$$G/\ker\varphi \cong H.$$

- (iii) Applications of the First isomorphism theorem.
 - (a) The map $\text{Det}: \text{GL}(n, F) \to F^{\times}$ is an epimorphism whose kernel is given by

 $ker(Det) = \{A \in GL(n, F) : Det(A) = 1\} = SL(n, F).$

Therefore, the First isomorphism theorem implies that

$$\operatorname{GL}(n, F) / \operatorname{SL}(n, F) \cong F^{\times}.$$

(b) For $n \ge 2$, the map $\beta_n : \mathbb{Z} \to \mathbb{Z}_n$ is an epimorphism whose kernel is given by

 $\ker \beta_n = \{x \in \mathbb{Z} : \beta_n(x) = [x] = [0]\} = n\mathbb{Z}.$

Therefore, the First isomorphism Theorem implies that

$$\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n.$$

(c) The map

$$\varphi: \mathbb{R} \to S^1 = \{z \in \mathbb{C} : |z| = 1\} : x \stackrel{\varphi}{\mapsto} e^{i2\pi x}$$

is an epimorphism whose kernel is given by

$$\ker \varphi = \{x \in \mathbb{R} : \varphi(x) = \cos(2\pi x) + i\sin(2\pi x) = 1\} = \mathbb{Z}.$$

Therefore, the First isomorphism theorem implies that

 $\mathbb{R}/\mathbb{Z} \cong S^1$.

- (iv) Let *G* be a group, H < G, and $N \lhd G$. Then
 - (a) $H \cap N \triangleleft H$.
 - (b) $N \triangleleft HN$.
- (v) *Second Isomorphism Theorem:* Let *G* be a group, H < G, and $N \lhd G$. Then

$$H/H \cap N \cong HN/N.$$

(vi) *Third Isomorphism Theorem:* Let *G* be group, and $H, K \triangleleft G$ such that H < K. Then

$$(G/H)/(K/H) \cong G/K.$$

- (vii) Some applications of the Third isomorphism theorem.
 - (a) For positive integers ℓ , m, n such that $m \mid \ell$ and $n \mid m$, we know that

 $\ell \mathbb{Z} \lhd n \mathbb{Z}, m \mathbb{Z} \lhd n \mathbb{Z} \text{ and } \ell \mathbb{Z} < m \mathbb{Z}.$

Therefore, the Third Isomorphism Theorem implies that

 $(n\mathbb{Z}/\ell\mathbb{Z})/(m\mathbb{Z}/\ell\mathbb{Z}) \cong n\mathbb{Z}/m\mathbb{Z},$

or equivalently, we have

$$\mathbb{Z}_{\ell/n}/\mathbb{Z}_{\ell/m}\cong\mathbb{Z}_{m/n}.$$

(b) Consider the group D_{2n} , when *n* is even and $n \ge 4$. Then we know that

$$\langle r^{n/2} \rangle \triangleleft D_{2n}, \langle r \rangle \triangleleft D_{2n}, \text{ and } \langle r^{n/2} \rangle < \langle r \rangle$$

Therefore, the Third isomorphism Theorem implies that

$$(D_{2n}/\langle r^{n/2}\rangle)/(\langle r\rangle/\langle r^{n/2}\rangle) \cong D_{2n}/\langle r\rangle.$$

(viii) *Fourth (or Lattice) Isomorphism Theorem:* Let *G* be a group and let $N \trianglelefteq G$. Then there is a one-to-one correspondence between the set of subgroups of *G* containing *N* and the set of subgroups of *G*/*N*. In particular, every subgroup of *G*/*N* is of the form *H*/*N* for some subgroup *H* of *G* containing *N*.

4 Group actions

4.1 Basic definitions and examples

(i) Let *G* be a group and *A* be nonempty say. Then *an action of G on A*, written as $G \cap A$ is a map

$$G \times A \to A : (g, a) \mapsto g \cdot a$$

satisfying the following conditions

- (a) $1 \cdot a = a$, for all $a \in a$, and
- (b) $g \cdot (h \cdot a) = (gh) \cdot a$, for all $g, h \in G$ and $a \in A$.
- (ii) Examples of group actions:
 - (a) There is a natural action (denoted by $G \curvearrowright G$) of a group G on itself by left multiplication given by

$$(g,h) \mapsto gh$$
, for all $g,h \in G$.

The permutation representation $\psi_{G \cap G} : G \to S(G)$ afforded by this action given by

$$\psi_{G \cap G}(g) = \varphi_g$$
, where $\varphi_g(h) = gh$, for all $h \in G$,

is called the *left regular representation*.

(b) A group *G* also acts on itself by conjugation (denoted by $G \cap^{c} G$), which is defined in the following manner

$$(g, h) \mapsto ghg^{-1}$$
, for all $g, h \in G$,

and this yields the permutation representation

$$\psi_{G \cap^c G}(g) = \varphi_g^c$$
, where $\varphi_g^c(h) = ghg^{-1}$, for all $h \in G$.

(c) Let P_n be the regular *n*-gon imbedded within the closed disk $\{z \in \mathbb{C} : |z| \le 1\} \subset \mathbb{C}$ so that its vertices coincide with the roots of unity. Then $D_{2n} = \langle r, s \rangle \curvearrowright P_n$ and this action if defined as follows for each $z \in P_n$:

i. $r \cdot z = e^{i2\pi/n} \cdot z$ and

ii.
$$s \cdot z = \overline{z}$$
.

(d) The group $\mathbb{Z} \curvearrowright \mathbb{R}$ via translation by an integer, which is formally defined as:

$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R} : (z, x) \mapsto x + z.$$

In a similar manner, we can define the action $\mathbb{Z}^2 \curvearrowright \mathbb{R}^2$.

- (iii) For a group *G*, the set $S(G) = \{f : G \to G | f \text{ is a bijection}\}$ forms a group under composition.
- (iv) Every action $G \curvearrowright A$ induces a homomorphism

$$\psi_{G \cap A} : G \to S(A),$$

defined by

$$\psi(g) = \varphi_g$$
, where $\varphi_g(a) = g \cdot a$, for all $a \in A$,

which is called the *permutation representation* induced (or afforded) by the action.

(v) Conversely, given a homomorphism ψ : $G \rightarrow S(A)$, the map

$$G \times A \rightarrow A : (g, a) \mapsto \psi(g)(a)$$

defines an action of G on A.

- (vi) A group action $G \curvearrowright A$ is said to be *faithful* if the permutation representation $\psi_{G \cap A}$ it affords, is a monomorphism.
- (vii) Examples (and non-examples) of faithful actions.
 - (a) The actions in 4 (ii) (a), (c), and (d) above are faithful actions.
 - (b) The conjugation action $G \curvearrowright^c G$ is not in general a faithful action.

4.2 The Orbit-Stabilizer Theorem

- (i) Consider an action $G \cap A$. Then
 - (a) for each $a \in A$, the set $G_a = \{g \in G | g \cdot a = a\}$ is called the *stabilizer* of *a* under the action.
 - (b) or each $a \in A$, the set $\mathcal{O}_a = \{g \cdot a \mid g \in G\}$ is called the *orbit* of *a* under the action.
 - (c) ker $\psi_{G \cap A}$ is called *kernel of the action*, and is also denoted by Ker($G \cap A$).
- (ii) Consider an action $G \cap A$. Then
 - (a) Ker($G \cap A$) $\trianglelefteq G$, and
 - (b) for each $a \in A$, $G_a \leq G$.
- (iii) Consider an action $G \cap A$.
 - (a) Then the relation \sim on *A* defined by

 $a \sim b \iff$ there exists some $g \in G$ such that $g \cdot a = b$

defines an equivalence relation on A.

(b) Moreover, the equivalence classes under ~ are precisely the distinct orbits \mathcal{O}_a under the action. Consequently, for any two orbits \mathcal{O}_a and \mathcal{O}_b , we have that either

$$\mathcal{O}_a = \mathcal{O}_b \text{ or } \mathcal{O}_a \cap \mathcal{O}_b = \emptyset.$$

- (iv) An action $G \curvearrowright A$ is said to be *transitive* if there exists some $a \in A$ for which $\mathcal{O}_a = A$. This is equivalent to requiring that for an action to be transitive, $\mathcal{O}_a = A$, for all $a \in A$.
- (v) **Orbit-Stabilizer Theorem:** Consider an action $G \frown A$, where $|A| < \infty$. Then for each $a \in A$, we have that

$$[G:G_a] = |\mathcal{O}_a|.$$

4.3 Applications of the Orbit-Stabilizer Theorem

4.3.1 The Burnside Lemma

(i) Consider an action $G \cap A$, where $|G|, |A| < \infty$. Then

$$|\mathcal{O}_a| \mid |G|$$
, for each $a \in A$.

(ii) The collection of distinct orbits under an action $G \cap A$ is defined by:

$$A/G = \{ \mathcal{O}_a : a \in A \}.$$

(iii) *Burnside Lemma:* Consider an action $G \cap A$, where $|G|, |A| < \infty$. Then the number of distinct orbits under the action (denoted by |A/G|) is given by

$$|A/G| = \frac{1}{|G|} \sum_{g \in G} |A_g|,$$

where $A_g = \operatorname{Fix}_g(A) = \{a \in A \mid g \cdot a = a\}.$

4.3.2 The action $G \cap G$

- (i) For a group *G*, consider the self-action $G \cap G$ by left-multiplication.
 - (a) $G \cap G$ is a transitive action,
 - (b) $\operatorname{Ker}(G \curvearrowright G) = 1$, and consequently
 - (c) $G \xrightarrow{\psi_{G \cap G}} S(G)$.
- (ii) *Cayley's Thorem:* Every group *G* is isomorphic to a subgroup of *S*(*G*). In particular, if |G| = n, then *G* isomorphic to a subgroup of *S*_n.
- (iii) Given a group *G* and $H \le G$, the self-action $G \cap G$ induces an action $G \cap G/H$, which is defined by $(g, g'H) \mapsto (gg')H$, and this action has the following properties:
 - (a) It is a transitive action.
 - (b) Its kernel is the largest normal subgroup of *G* that is also a subgroup of *H*, which is given by

$$\operatorname{Ker}(G \cap G/H) = \bigcap_{g \in G} gHg^{-1}.$$

- (c) $G_H = H$ and $\mathcal{O}_H = G/H$.
- (d) Hence, when $|G/H| < \infty$ and $|G| < \infty$, the Orbit-Stabilizer Theorem yields

$$[G:H] = |G|/|H|,$$

which is the Lagrange's Theorem.

4.3.3 The action $G \curvearrowright^c G$ and the Class Equation

(i) For a group *G*, the set

$$Z(G) = \{g \in G \mid gh = hg, \text{ for all } h \in G\}$$

is called the *center of G*.

- (ii) Let *G* be a group and $S \subseteq G$.
 - (a) The set

$$C_G(S) = \{g \in G \mid gs = sg, \text{ for all } s \in S\}$$

is called the *centralizer of S in G*.

(b) The set

$$N_G(S) = \{g \in G \mid gSg^{-1} = S\}$$

is called the the *normalizer of H in G*.

- (iii) Let *G* be a group and $S \subseteq G$. Then $C_G(S) \leq G$ and $N_G(S) \leq G$. Furthermore, when $S = \{h\}$, we have that $C_G(h) = N_G(h)$.
- (iv) For a group *G*, consider the self-action $G \curvearrowright^c G$ by conjugation.
 - (a) Since $\mathcal{O}_1 = \{1\}$, $G \curvearrowright^c G$ is a non-transitive action.
 - (b) Ker($G \curvearrowright^{c} G$) = Z(G), and hence $Z(G) \trianglelefteq G$.
 - (c) For each $h \in G$, $G_h = C_G(h)$.
 - (d) For each $h \in G$, the orbit $\mathcal{O}_h = \{ghg^{-1} | g \in G\}$ is called the *conjugacy class of h in G* (also denoted by \mathcal{C}_h).
- (v) Let P(G) denote the power set of *G*. The action $G \curvearrowright^c G$ extends to an action $G \curvearrowright^c P(G)$ defined by $(g, S) \mapsto gSg^{-1}$. This action has the following properties.

(a) For each $S \in P(G)$, we have

$$G_S = \{g \in G \mid gSg^{-1} = S\} = N_G(S).$$

(b) For each $S \in P(G)$, we have

$$\mathcal{O}_S = \{gSg^{-1} \mid g \in G\} = \mathcal{C}_S,$$

the conjugacy class of the set S.

(c) When $|G| < \infty$, we have that $|P(G)| < \infty$, and hence the Orbit-Stabilizer Theorem, yields

$$|\mathscr{C}_S| = [G: N_G(S)].$$

(vi) *Class Equation:* Let *G* be a finite group, and let $g_1, g_2, ..., g_r$ be representatives of the distinct classes of *G* not contained in *Z*(*G*). Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(g_i)]$$

(vii) Let *G* be a finite group, and *p* is the smallest prime such that p | |G|. Then every index *p* subgroup of *G* is normal is *G*.

4.4 Sylow's Theorems

- (i) Let *p* be a prime number. A group *G* is said to be a *p*-group if $|G| = p^k$ for some postive integer *k*.
- (ii) Example of *p* groups.
 - (a) Abelian: \mathbb{Z}_{p^k} and \mathbb{Z}_p^k .
 - (b) Non-abelian: Q_8 , A_3 , and $D_{2 \cdot 2^k}$.
- (iii) Consider an action $G \curvearrowright A$, where $|G| = p^n$ and $|A| < \infty$. Then

$$|A| \equiv |A_G| \pmod{p}$$

(iv) Let *H* be a *p*-subgroup of a finite group *G*. Then

$$[N_G(H):H] \equiv [G:H] \pmod{p}$$

- (v) *Cauchy Theorem:* Let *G* be a finite group, and let *p* be a prime number such that *p* | |*G*|. Then *G* has an element of order *p*.
- (vi) *First Sylow Theorem:* Let *G* be a finite group with $|G| = p^n m$, where *p* is a prime number, and *m* is a positive integer such that $p \nmid m$. Then
 - (a) for $1 \le i \le n$, *G* contains a subgroup of order p^i , and
 - (b) for 1 ≤ *i* < *n*, every subgroup of *G* of order *pⁱ* is a normal subgroup of a subgroup of *G* of order *pⁱ⁺¹*.
- (vii) If $|G| = p^n m$, where *p* is a prime number, and *m* is a positive integer such that $p \nmid m$, then a subgroup of order p^n is called a *Sylow p-subgroup* of *G*.
- (viii) If |G| = pq, where *p* and *q* are primes, then *G* has a Sylow *p*-subgroup *H* of order *p* and a Sylow *q*-subgroup *K* of order *q*, and so G = HK.
- (ix) *Second Sylow Theorem:* Any two Sylow *p*-subgroups of a group *G* are conjugate in *G*.
- (x) If *P* is a unique Sylow *p*-subgroup of a group *G*, then $P \trianglelefteq G$.
- (xi) Let *P* be a Sylow *p*-subgroup, and *Q*, a *p*-subgroup of a group *G*. Then

$$N_G(P) \cap Q = P \cap Q$$

- (xii) *Third Sylow Theorem:* Let n_p denote the number of Sylow *p*-subgroups of a group *G*. Then:
 - (a) $n_p \equiv 1 \pmod{p}$ and
 - (b) for each Sylow *p*-subgroup *P* of *G*, we have $[G: N_G(P)] = n_p$. Consequently, $n_p ||G|$.

4.5 Simple groups

- (i) A group *G* is said to be *simple* if it has no proper normal subgroups.
- (ii) Examples of simple/non-simple groups:
 - (a) If |G| = p, where *p* is a prime, then *G* has no proper subgroups, and so *G* has to be simple.

- (b) Let $|G| = p^k$, where *p* is a prime and k > 1. Then by the First Sylow Theorem, *G* has a subgroup *H* of order p^{k-1} . Since [G:H] = p, we have that $H \le G$, and so *G* is non-simple.
- (c) Let $|G| = 2p^k$, where *p* is a prime. Then by the First Sylow Theorem, *G* has a subgroup *H* of order p^{k-1} . Since [G:H] = 2, we have that $H \le G$, and so *G* is non-simple.
- (d) If |G| = pq, where p < q are distinct primes, then *G* is not simple, as it has a subgroup of order *q* that has index *p* in *G*.
- (iii) Let *G* be any group that has non-prime order less than 60. Then *G* is non-simple.
- (iv) The group A_5 (of order 60) is the simple group of smallest non-prime order.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups *G* and *H*, consider the cartesian product $G \times H$ with a binary operation given by

 $(g_1, h_2)(g_2, h_2) = (g_1g_2, h_1h_2)$, for all $g_1, g_2 \in G$ and $h_1, h_2 \in H$.

Under this operation, the set $G \times H$ forms a group called the *external direct product (or the direct product)* of the groups *G* and *H*, and is denoted simply as $G \times H$.

- (ii) The identity element in $G \times H$ is (1, 1) and the inverse of an element $(g, h) \in G \times H$ is given by (g^{-1}, h^{-1}) .
- (iii) The notion of a direct of two groups can be extended to define the direct product of *n* groups G_i , $1 \le i \le n$, denoted by

$$\prod_{i=1}^n G_i = G_1 \times G_2 \times \ldots \times G_n.$$

(iv) The groups G and H inject into the $G \times H$, via the natural monomorphisms

$$G \hookrightarrow G \times H : g \mapsto (g, 1)$$
$$H \hookrightarrow G \times H : h \mapsto (1, h)$$

(v) For any two groups G and H, the natural homomorphism

$$G \times H \to H \times G : (g, h) \mapsto (h, g)$$

is an isomorphism, and hence we have that

$$G \times H \cong H \times G.$$

In other words, up to isomorphism, the direct product of two groups is commutative.

(vi) For any three groups G, H, and K, the natural homomorphism

 $(G \times H) \times K \to (G \times H) \times K : ((g, h), k) \mapsto (g, (h, k))$

is an isomorphism, and hence we have that

$$G \times (H \times K) \cong (G \times H) \times K$$

In other words, up to isomorphism, the direct product of three groups is associative.

- (vii) A direct product $\prod_{i=1}^{n} G_i$ of groups is abelian, if and only if, each component group G_i is abelian.
- (viii) Let $m, n \ge 2$ be positive integers. Then

$$\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$$

if and only is gcd(m, n) = 1.

(ix) **Classification of finitely generated abelian groups:** Every finitely generated abelian group is isomorphic to a group of the form

$$\mathbb{Z}^r \times \mathbb{Z}_{r_1} \times \ldots \times \mathbb{Z}_{r_k},\tag{(*)}$$

where *n* and the $r_i \ge 1$ are positive integers such that $r_i | r_{i+1}$, for $1 \le i \le k-1$.

- (x) Let *G* be a finitely generated abelian group that has a direct product decomposition of the form (*) above.
 - (a) The component \mathbb{Z}^r is the called *free part*, and the component $\mathbb{Z}_{r_1} \times \dots \times \mathbb{Z}_{r_k}$ is called the *torsion* part of the direct product decomposition of *G*.
 - (b) The integer *r* is called *rank* of *G*.

5.2 Semi-direct products

(i) For a group *G*, the set

Aut(*G*) = {
$$\varphi$$
 : *G* \rightarrow *G* | φ is a isomorphism}

forms a group under composition (with identity element id_G) called the *automorphism group of G*.

- (ii) For a group G, $Aut(G) \le S(G)$.
- (iii) Examples of automorphism groups.
 - (a) Aut(\mathbb{Z}_n) $\cong U_n$, the multiplicative group of units modulo *n*.
 - (b) Aut(\mathbb{Z}) $\cong \mathbb{Z}_2$.
 - (c) $\operatorname{Aut}(D_8) \cong D_8$.
- (iv) Let *G*, *H* be groups, and ψ : *G* \rightarrow Aut(*H*) be a homomorphism.
 - (a) Consider the binary operation \cdot on the set $G \times H$ defined by

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1\psi(g_1)(h_2))$$

Then $(G \times H, \cdot)$ forms a group called the *semi-direct product of the* groups *G* and *H* with respect to ψ , and is denoted by $G \ltimes_{\psi} H$.

- (b) The identity element in $G \ltimes_{\psi} H$ is (1, 1) and the inverse of an element $(g, h) \in G \times H$ is given by (g^{-1}, h^{-1}) .
- (c) By definition, it follows that $H \triangleleft G \ltimes_{\psi} H$.
- (v) A semi-direct product $G \ltimes_{\psi} H$ is abelian if and only if both *G* and *H* are abelian, and ψ is trivial.
- (vi) Examples of semi-direct products:
 - (a) If ψ is taken to be the trivial homomorphism (that maps all elements of *G* to the identity isomorphism $1 \in Aut(H)$), then

$$G \ltimes_{\psi} H = G \times H.$$

Hence, the semi-direct product of groups is a generalization of the direct product.

- (b) Let $G = \mathbb{Z}_m$ and $H = \mathbb{Z}_n$
 - Then a non-trivial homomorphism $\psi : G \to \operatorname{Aut}(H) \cong U_n$ exists if and only if

 $gcd(m,\phi(n)) > 1.$

• Moreover, ψ is completely determined by $\psi(1)$, and so if $\psi(1) = k \in U_n$, then *k* has to satisfy

$$k^m \equiv 1 \pmod{n}$$
.

- Hence, $\mathbb{Z}_m \ltimes_{\Psi} \mathbb{Z}_n$ is often abbreviated as $\mathbb{Z}_n \ltimes_k \mathbb{Z}_n$.
- In particular, consider the case when *m* = 2 in example (a) above with the homomorphism ψ determined by ψ(1) = −1 ∈ Aut(*H*). (Note that −1 here denotes the isomoprhism h → h⁻¹ = −h, for each h ∈ H.) Representing the dihedral group as before, that is,

$$D_{2n} = \langle r, s \rangle = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},\$$

we have that

$$\mathbb{Z}_2 \ltimes_{-1} \mathbb{Z}_n \cong D_{2n}$$

via the isomorphism

$$(i, j) \mapsto s^i r^j$$
.

(c) If $G = H = \mathbb{Z}$, there exists only non-trivial semi-direct product $\mathbb{Z} \ltimes_{\psi} \mathbb{Z}$, which occurs when

$$\psi: \mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2: 1 \xrightarrow{\psi} [1].$$

(d) Consider group $S(\mathbb{R}^2)$ of symmetries (or isometries) of the plane \mathbb{R}^2 . Then subgroup of translations by a vector (in \mathbb{R}^2) is a normal subgroup of $S(\mathbb{R}^2)$ that is isomorphic to \mathbb{R}^2 . Thus, we have

$$S(\mathbb{R}^2) \cong O(2, \mathbb{R}) \ltimes_{\psi} \mathbb{R}^2,$$

where ψ : O(2, \mathbb{R}) \rightarrow Aut(\mathbb{R}^2) is defined by $\psi(A)(v) = Av$.

(e) The special real orthogonal group $H = SO(n, \mathbb{R})$ is a normal subgroup of the real orthogonal group $G = O(n, \mathbb{R})$ since [G : H] = 2. Consider a subgroup $\{1, R\} < O(n, \mathbb{R})$, where *R* is a reflection that preserves the origin. Then it follows that

$$O(n,\mathbb{R}) \cong \{1,R\} \ltimes_{\psi} SO(n,\mathbb{R}) \cong \mathbb{Z}_2 \ltimes_{\psi} SO(n,\mathbb{R}),\$$

where $\Psi : \{1, R\} \rightarrow \text{Aut}(\text{SO}(n, \mathbb{R}))$ is defined by $\psi(R)(A) = RAR^{-1}$.

(f) For $n \ge 3$, the alternating group $H = A_n$ is a normal subgroup of the symmetric group $G = S_n$ since [G : H] = 2. Consider a subgroup $\{1, \tau\} < S_n$, where $\tau \in S_n \setminus A_n$ and $|\tau| = 2$. Then it follows that

$$S_n \cong \{1, \tau\} \ltimes_{\psi} A_n \cong \mathbb{Z}_2 \ltimes_{\psi} A_n,$$

where $\Psi : \{1, \tau\} \to A_n$ is defined by $\psi(\tau)(\sigma) = \tau \sigma \tau^{-1}$.

5.3 Group Extensions

(i) A sequence of groups G_i and homomorphisms φ_i of the form

$$\dots \to G_{n-1} \xrightarrow{\varphi_{n-1}} G_n \xrightarrow{\varphi_n} G_{n+1} \to \dots$$

is called an *exact sequence* if ker $\varphi_{i+1} = \operatorname{Im} \varphi_i$, for all *i*.

(ii) (a) A short exact sequence is an exact sequence of the form

$$1 \xrightarrow{\varphi_0} N \xrightarrow{\varphi_1} G \xrightarrow{\varphi_2} H \xrightarrow{\varphi_4} 1,$$

where 1 denotes the trivial group, and φ_0, φ_4 are trivial homomorhisms.

- (b) The exactness of the sequence above implies that φ_1 is injective and and φ_2 is surjective.
- (iii) If *G*, *N* and *H* are group, then *G* is called an *extension of H by N* if there exists a short exact sequence of the form

$$1 \to N \to G \to H \to 1.$$

- (iv) Examples of group extensions:
 - (a) For any group *G*, and $N \leq G$, there is a natural short exact sequence given by

$$1 \to N \hookrightarrow G \xrightarrow{g \mapsto gN} G/N \to 1.$$

Hence, *G* is an extension of G/N by *N*.

(b) A semi-direct product $H \ltimes_{\psi} N$ of groups *N* and *H* is an extension of *H* by *N* by virtue of the short exact sequence:

$$1 \to N \xrightarrow{n \mapsto (n,0)} H \ltimes_{\psi} N \xrightarrow{(h,n) \mapsto h} H \to 1.$$

- (c) A group G that is an extension of \mathbb{Z}_m by \mathbb{Z}_n is called a *metacyclic* group.
 - D_{2n} is a metacyclic group, which is an extension of \mathbb{Z}_2 by \mathbb{Z}_n via the short exact sequence

$$1 \to \langle r \rangle \hookrightarrow D_{2n} \to D_{2n} / \langle r \rangle \to 1.$$

• Q_8 is a metacyclic group that is an extension of \mathbb{Z}_2 by \mathbb{Z}_4 via the short exact sequence

$$1 \to \langle x \rangle \hookrightarrow Q_8 \to Q_8 / \langle x \rangle \to 1,$$

where $x \in \{i, j, k\}$. In fact, Q_8 is also an extension of the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$ by \mathbb{Z}_2 via the short exact sequence

$$1 \rightarrow Z(Q_8) \hookrightarrow Q_8 \rightarrow Q_8/Z(Q_8) \rightarrow 1.$$

(v) A short exact sequence

$$1 \to N \xrightarrow{\varphi_1} G \xrightarrow{\varphi_2} H \to 1$$

splits if there exists a homomorphism $\bar{\varphi}_2 : H \to G$ such that $\varphi_2 \circ \bar{\varphi}_2 = id_H$.

(vi) A short exact sequence

$$1 \to N \xrightarrow{\varphi_1} G \xrightarrow{\varphi_2} H \to 1$$

splits if and only if $G \cong H \ltimes_{\psi} N$.

- (vii) Examples of split and non-split short exact sequences.
 - (a) The short exact sequence

$$1 \to N \xrightarrow{n \mapsto (n,0)} H \ltimes_{\psi} N \xrightarrow{(h,n) \xrightarrow{\varphi_2}} H \to 1$$

splits as the homomorphism $\bar{\varphi}_2 : H \to H \ltimes_{\psi} N : h \stackrel{\bar{\varphi}_2}{\longrightarrow} (h, 0)$ satisfies $\varphi_2 \circ \bar{\varphi}_2 = i d_H$. In particular, the short exact sequence

$$1 \to \langle r \rangle \hookrightarrow D_{2n} \to D_{2n} / \langle r \rangle \to 1$$

splits.

(b) The short exact sequence

$$1 \to \langle x \rangle \hookrightarrow Q_8 \to Q_8 / \langle x \rangle \to 1,$$

where $x \in \{i, j, k\}$, does not split, whereas the short exact sequence

$$1 \to Z(Q_8) \hookrightarrow Q_8 \to Q_8 / Z(Q_8) \to 1$$

splits.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to isomorphism) of orders ≤ 15 .

Order	Abelian groups	Non-abelian groups
1	\mathbb{Z}_1	None
2	\mathbb{Z}_2	None
3	\mathbb{Z}_3	None
4	\mathbb{Z}_4 , $\mathbb{Z}_2 imes \mathbb{Z}_2$	None
5	\mathbb{Z}_5	None
6	\mathbb{Z}_6	S_3
7	\mathbb{Z}_7	None
8	$\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	D_8 , Q_8
9	\mathbb{Z}_9 , $\mathbb{Z}_3 \times \mathbb{Z}_3$	None
10	\mathbb{Z}_{10}	D_{10}
11	\mathbb{Z}_{11}	None
12	\mathbb{Z}_{12} , $\mathbb{Z}_6 \times \mathbb{Z}_2$	A_4 , D_{12} , $\mathbb{Z}_4\ltimes\mathbb{Z}_3$
13	\mathbb{Z}_{13}	None
14	\mathbb{Z}_{14}	D_{14}
15	\mathbb{Z}_{15}	None

7 Solvable groups

7.1 Normal and composition series

(i) Let *G* be a group.

(a) A series of subgroups N_i , for $1 \le i \le k$ satisfying

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq \ldots \trianglelefteq N_{k-1} \trianglelefteq N_k = G$$

is called a *subnormal series* of *G*.

- (b) A subnormal series as above in which each $N_i \leq G$ is called a *normal series* of *G*.
- (c) If in a subnormal series

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq \ldots \trianglelefteq N_{k-1} \trianglelefteq N_k = G,$$

the quotient groups N_{i+1}/N_i are simple for $1 \le i \le k-1$, then the normal series is called a *composition series* of *G*. The quotient groups N_{i+1}/N_i are called *composition factors*.

- (ii) Examples of composition and normal series.
 - (a) The following series of D_{2n}

$$1 \triangleleft \langle r \rangle \triangleleft D_{2n}$$

is a normal series for all n, and is a composition series when n is prime.

(b) The series of S_n

 $1 \leq A_n \leq S_n$

is a composition series of S_n for n = 3 and for $n \ge 5$ (since A_n is simple.) However, for n = 4 it is simply a normal series of S_4 .

(c) Every group *G* of order *p*^{*k*}, for *p* prime and *k* > 1 admits a composition series of the form

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_{k-1} \trianglelefteq H_k = G,$$

where H_i is a group of order p^i whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems.

- (iii) Let *G* be a group and $A, B \triangleleft G$ with $A \neq B$ such that both G/A and G/B are simple. Then $G/A \cong B/A \cap B$ and $G/B \cong A/A \cap B$.
- (iv) **Jordan-Holder Theorem.** Let *G* be a finite non-trivial group. Then:

- (a) G has a composition series, and
- (b) if

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq \dots \trianglelefteq N_{r-1} \trianglelefteq N_r = G$$

and
$$1 = M_0 \trianglelefteq M_1 \trianglelefteq \dots \trianglelefteq M_{s-1} \trianglelefteq M_s = G$$

are two composition series' for *G*, then r = s, and there exists a permutation π of $\{1, 2, ..., r\}$ such that

$$M_{\pi(i)+1}/M_{\pi(i)} \cong N_{i+1}/N_i$$
, for $1 \le i \le r-1$.

7.2 Derived series and solvable groups

(i) The subgroup $[G, G] = \langle S \rangle$ of a group *G* generated by elements in the set

$$S = \{ghg^{-1}h^{-1} | g, h \in G\}$$

is called the *commutator subgroup or the derived subgroup of G*. It is also denoted by G' or $G^{(1)}$.

- (ii) Let *G* be a group. Then:
 - (a) $G^{(1)} \trianglelefteq G$.
 - (b) $G/G^{(1)}$ is an abelian group called the abelianization of *G*.
 - (c) *G* is abelain if and only if $G^{(1)} = 1$.
 - (d) Given $N \trianglelefteq G$, G/N is abelian if and only if $[G, G] \le N$.
- (iii) For $i \ge 0$, the i^{th} commutator subgroup (or the i^{th} derived group) $G^{(i)}$ of a group *G* is defined as follows:
 - (a) $G^{(0)} := G$, and
 - (b) $G^{(i)} := [G^{(i-1)}, G^{(i-1)}]$, for $i \ge 1$.
- (iv) The *derived series* (or the commutator series) of a group G is the series

$$\dots G^{(i+1)} \trianglelefteq G^{(i)} \trianglelefteq \dots \trianglelefteq G^{(1)} \trianglelefteq G^{(0)} = G.$$

(v) A group G is said to be *solvable* if it has a subnormal series

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq \ldots \trianglelefteq N_{k-1} \trianglelefteq N_k = G$$

such that N_{i+1}/N_i is abelian, for $1 \le i \le k-1$.

- (vi) Examples of solvable and non-solvable groups.
 - (a) The group S_3 is solvable, as it has a normal series

$$1 \trianglelefteq A_3 \trianglelefteq S_3$$
,

where $A_3 \cong \mathbb{Z}_3$ and $S_3 / A_3 \cong \mathbb{Z}_2$.

(b) The Jordan-Holder Theorem asserts that S_5 has a composition series given by

 $1 \trianglelefteq A_5 \trianglelefteq S_5$

that is unique up to permutation of its composition factors, and these factors are isomorphic to A_5 and \mathbb{Z}_2 . Since A_5 is a non-abelian simple group and $[S_5: A_5] = 2$, S_5 is not solvable.

- (c) Abelian groups are solvable, as all of their subgroups are normal and all quotient groups formed using these subgroups will also be abelian.
- (d) A group *G* of order p^k , for *p* prime and k > 1 admits a normal series of the form

$$1 = H_0 \trianglelefteq H_1 \trianglelefteq H_2 \trianglelefteq \ldots \trianglelefteq H_{k-1} \trianglelefteq H_k = G,$$

where H_i is a group of order p^i whose existence and normality in H_{i+1} are guaranteed by the Sylow's Theorems. Since $H_{i+1}/H_i \cong \mathbb{Z}_p$, *G* is solvable.

(e) Consider a group *G* such that |*G*| = *pq*, where *p* and *q* are distinct primes with *p* > *q*. Then by the Sylow's theorems, *G* has a unique Sylow *p*-subgroup *P* of order *p*, which implies that *P*⊲*G*. Furthermore, as |*G*/*P*| = *q*, *G*/*P* is abelian, and so we have subnormal series of *G* with abelian factors given by:

$$1 \lhd P \lhd G.$$

Therefore, *G* is solvable.

- (vii) A subgroup of a solvable group is solvable.
- (viii) A group *G* is solvable if and only if there exists $N \leq G$ such that both *N* and G/N are solvable.
- (ix) A group *G* is solvable if and only if there exists and integer $k \ge 0$ such that $G^{(k)} = 1$.
- (x) For a solvable group *G*, smallest integer $k \ge 0$ such that $G^{(k)} = 1$ is called the *derived length or the solvable length* of *G*.
- (xi) Properties of the derived length.
 - (a) A group *G* has derived length 0 if and only if *G* is trivial.
 - (b) A group *G* has derived length 1 if and only if *G* is abelian.
 - (c) A group has derived length at most two if and only it has an abelian normal subgroup such that the quotient group is also an abelian group.
- (xii) Let *G* be a finite group. Here are some known non-trivial results on solvable groups.
 - (a) (Philip-Hall) *G* is solvable if and only if for every divisor *d* of |G| such that gcd(d, |G|/d) = 1, *G* has a subgroup of order *d*.
 - (b) (Burnside) If $|G| = p^a q^b$, where *p* and *q* are primes, then *G* is solvable.
 - (c) (Feit-Thompson Theorem) If |G| is odd, then G is solvable.
 - (d) (Thompson) If for for every pair of elements $x, y \in G$, $\langle x, y \rangle$ is a solvable group, then *G* is solvable.