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1 Preliminaries

1.1 Basic definitions and examples

(i) (a) A group (G , ·) is a nonempty set G with a binary operation · satisfying
the properties:

(a) (Closure property) For any a,b ∈G , we have a ·b ∈G .

(b) (Associativity) For any a,b,c ∈G , we have

a · (b · c) = (a ·b) · c.

(c) (Existence of identity) There exists an element e ∈ g called the
identity element such that

a ·e = a = e ·a,

for any a ∈G .

(d) (Existence of inverse) For each a ∈G , there exists an a−1 ∈G such
that

a ·a−1 = e = a−1 ·a.

(b) In a group (G , ·) as above, the following properties hold:

(a) (Right cancellation law) For a,b,c ∈G , if a · c = b · c, then a = b.

(b) (Left cancellation law) For a,b,c ∈G , if c ·a = c ·b, then a = b.

(c) The identity e is unique.

(d) Every element a ∈G has a unique inverse a−1.

(ii) Let G be a group.

(a) G is a said to be finite if the cardinality of the set G is finite. Otherwise,
G is said to be infinite.

(b) The order of a finite group (denoted by |G|) is the number of elements
in G .

(iii) Examples of groups:

(a) Additive groups: (Z,+), (Q,+), (R,+), (C,+), and Mn((F ), for F =Z,Q, R,
and C.
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(b) Multiplicative groups (Q×, ·), (R×, ·), (C×, ·), and GL(n, X ), for X =Q, R,
and C.

(c) The Dihedral group D2n - the group of symmetries of a regular n-gon.

(iv) Let G be group and S ⊂G . Then S is a generating set for G (denoted by G =
〈S〉) if every element in G can be expressed as a finite product of elements
in S and their inverses.

(v) The order of an element g ∈G (denoted by |g |) is the smallest positive inte-
ger m such that g m = 1. If such an m does not exist for a given g ∈G , then
g is said to be of infinite order in G .

(vi) Let G be a group, let g ∈G with |g | = n. Then

|g k | = n

gcd(k,n)
.

(vii) A group G is said to be abelian if g h = hg for all g ,h ∈G .

(viii) Examples (non-examples) of abelian groups.

(a) The groups in Examples 1.1 (iii)(a) are abelian groups.

(b) The matrix groups in Examples 1.1 (iii)(b) and the group in (c) are
non-abelian groups.

1.2 The cyclic group

(i) A group G is said to be cyclic, if there exists a g ∈ G such that G = 〈g 〉. In
other words, G is cyclic, if its generated by a single element.

(ii) Let G = 〈g 〉 be a cyclic group.

(a) If G is of order n (denoted by Cn), then

Cn = {1, g , g 2, . . . , g n−1}.

(b) If G is of infinite order, then

G = {1, g±1, g±2, . . .}.

(iii) Realizing Cn as the multiplicative group of complex nth roots unity.
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(iv) The group Zn = {[0], [1], . . . , [n −1]} of residue classes modulo n under +,
where

[i ] = {nk + i |k ∈Z}

(v) Using the association [k] ↔ e i 2πk/n , for 0 ≤ k ≤ n −1, we can identify Zn

with Cn .

(vi) Let G = 〈g 〉 be a cyclic group.

(a) Then G is abelian.

(b) If H ≤ 〈g 〉, then H is also cyclic.

(c) If |G| = n, then it has a unique cyclic subgroup 〈g n/d 〉 of order d for
divisor d of n.

1.3 The symmetric group

1.3.1 Basic definitions and examples

(i) Let X be a nonempty set. Then the set of permutations (or self-bijections)
of X defined by

S(X ) := { f : X → X : f is a bijection}

forms a group under composition called the symmetric group of X.

(ii) When |X | = n, without loss of generality, we take X = {1,2, . . . ,n}, and we
denote the group S(X ) simply by Sn . The group Sn , of order n!, is called
the symmetric group (or the permutation group) on n letters.

(iii) Examples of symmetric groups.

(a) S2
∼=Z2.

(b) Since each symmetry of a regular n-gon induces a permutation of its
n vertices, we have S3

∼= D6 and in general, D2n < Sn for n ≥ 4.

(c) For n ≥ 4, Sn is a non-abelian group.

(d) For any group G , Aut(G) < S(G), since each automorphism is a bijec-
tive map.
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(e) Given any group G and fixed g ∈ G , consider ϕg : G → G defined by
ϕg (h) = g h, for all h ∈ G (i.e., left multiplication by the element g ).
Then it is apparent that ϕg ∈ S(G), and consequently, the map

ψ : G → S(G) : g
ψ7−→ϕg

is a monomorphism. In particular, if |G| = n, then G imbeds into Sn

(i.e. G ,→ Sn).

(iv) A typical element σ ∈ Sn is a bijection σ : {1,2, . . . ,n} → {1,2, . . . ,n}, so we
often denote such a σ by(

1 2 . . . n −1 n
σ(1) σ(2) . . . σ(n −1) σ(n)

)
To further simplify notation forσ, we only list the values ofσ on the subset
{i ∈ {1,2, . . . ,n} :σ(i ) 6= i }. For example, the permutation σ ∈ S5 given by(

1 2 3 4 5
2 3 1 4 5

)
is simply written as (

1 2 3
2 3 1

)
.

(v) A product σ1σ2 of two permutations σ1,σ2 ∈ Sn is defined as the permu-
tation(

1 2 . . . n −1 n
(σ1 ◦σ2)(1) (σ1 ◦σ2)(2) . . . (σ1 ◦σ2)(n −1) (σ1 ◦σ2)(n)

)
.

(vi) The support of a permutation σ ∈ Sn is defined by

supp(σ) := {i ∈ {1, . . . ,n} :σ(i ) 6= i }.

(vii) Two permutations σ1,σ2 ∈ Sn are said to be disjoint if

supp(σ1)∩ supp(σ2) =;.

(viii) Any two disjoint permutations in Sn commute.
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1.3.2 k-cycles

(i) A k-cycle in Sn is a permutation of the form(
i1 i2 . . . ik−1 ik

i2 i3 . . . ik i1

)
,

where 1 ≤ k ≤ n. A k-cycle as above is often denoted by

(i1 i2 . . . ik ).

A 2-cycle in Sn is a called a transposition (or an inversion).

(ii) Consider the k-cycle σ= (i1 i2 . . . ik ) in Sn . Then we have:

(a)
σ= (i1 σ(i1) σ2(i1) . . .σk−1(i1)), and

(b) o(σ) = k.

(iii) Example of k-cycles.

(a) The permutation (
1 2 3 4 5
2 3 1 4 5

)
∈ S5

is a 3-cycle given by (123).

(b) The permutation (
1 2 3 4
1 3 2 4

)
∈ S4

is a 2-cycle (transposition) given by (23).

(iv) Two cycles (i1 i2 . . . ik ), ( j1 j2 . . . j`) ∈ Sn commute if

{i1, . . . , ik }∩ { j1, . . . , j`} =;.

(v) Every k-cycle is a product of no less than k−1 transpositions. In particular,
for a k-cycle (i1 i2 . . . ik ) ∈ Sn , we have

(i1 i2 . . . ik ) = (i1 ik )(i1 ik−1) . . . (i1 i2).

(vi) Every permutation σ ∈ Sn can be expressed uniquely as a product of dis-
joint cycles. This is called the unique cycle decomposition of the permuta-
tion σ.
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1.3.3 Parity of a permutation

(i) Suppose that the unique cycle decomposition of a permutation σ ∈ Sn is
given by

σ=σ1σ2 . . .σkσ ,

where each σi is an mi -cycle. Then we define

N (σ) :=
kσ∑

i=1
(mi −1).

(ii) The sign (or parity) of a permutation σ ∈ Sn is defined by

sgn(σ) := (−1)N (σ).

(iii) A permutation σ ∈ Sn is called an:

(a) even permutation, if sgn(σ) = 1.

(b) odd permutation, if sgn(σ) =−1.

(iv) Let An = {σ ∈ Sn : sgn = 1}. For n ≥ 2, the map

τ : Sn → {±1}(=Z2) :σ
τ7−→ sgn(σ)

is an epimorphism with ker τ= An . Thus, we have

Sn/An
∼=Z2.

Consequently, An CSn and [Sn : An] = 2. The group An consisting of the
even permutations in Sn is called the alternating group on n letters.

1.3.4 Conjugacy classes of permutations

(i) Let G be a nontrivial group. Two elements g ,h ∈G are said to be conjugate
in G if there exists x ∈G such that g = xhx−1.

(ii) The relation ∼c on G given by

g ∼c h ⇐⇒ g and h are conjugate

defines an equivalence relation on G . Each equivalence class (denoted by
[g ]c ) induced by the relation ∼c is called a conjugacy class of G.
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(iii) A partition of a positive integer n is a way of writing n as a sum of positive
integers, up to reordering of summands. For example, the partitions of 4
are:

(a) 1+1+1+1,

(b) 2+1+1,

(c) 3+1,

(d) 2+2, and

(e) 4.

(iv) Suppose that the unique cycle decomposition of a permutation σ ∈ Sn is
given by

σ=σ1σ2 . . .σkσ ,

where each σi is an mi -cycle. Then:

(a) o(σ) = lcm(m1,m2, . . . ,mkσ).

(b) As
kσ∑

i=1
mi = n, this decomposition induces a partition Pσ of the inte-

ger n.

(c) Given two permutations σ1,σ2 ∈ Sn ,

[σ1]c = [σ2]c ⇐⇒ Pσ1 = Pσ2 .

Consequently, the number of distinct conjugacy classes of Sn is pre-
cisely the number of partitions of n.

2 Subgroups

2.1 Basic definitions and examples

(i) A subset H of a group G is called a subgroup of G (in symbols H ≤G ) if H
forms a group under the operation in G .

(ii) Let H be a subgroup H of a group G . Then H is said to be:

(a) proper subgroup of G (in symbols H <G) if H 6=G .

(b) trivial subgroup if H = {1}.
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(c) nontrivial subgroup of G if H 6= {1}.

(iii) Subgroup Criterion. Let G be a group. Then H ≤G if and only if for every
a,b ∈ H , ab−1 ∈ H .

(iv) Examples of subgroups:

(a) nZ<Z, for n ≥ 2.

(b) D2n < Sn , for n ≥ 3.

(c) An < Sn , for n ≥ 3.

(d) Cn <C×.

(e) For n ≥ 2, special linear group SL(n,F ) = {A ∈ GL(n,F ) |det(A) = 1} is
a subgroup of GL(n,F ) when F =R,Q, or C.

(f) For n ≥ 2, SL(n,Q) < SL(n,R) < SL(n,C).

(g) For n ≥ 2, GL(n,Q) < GL(n,R) < GL(n,C).

2.2 Cosets and Lagrange’s Theorem

(i) Let G be a group and H ≤G . Then the relation ∼H on G defined by

x ∼H y ⇐⇒ x y−1 ∈ H

is an equivalence relation.

(ii) Let G be a group and H ≤G . Then a left coset of H in G is given by

g H = {g h |h ∈ H },

and a right coset of H in G is given by

H g = {hg |h ∈ H }.

(iii) Let G be a group and H ≤G . Then

g H = {g ′ ∈G |g ′ ∼H g }.

(iv) Let G be a group and H ≤G . Then there exists a bijective correspondence
between:
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(a) g1H and g2H , for any g1, g2 ∈ H , and

(b) g H and H g , for any g ∈G .

(v) We define G/H := {g H |g ∈G} and H\G := {H g |g ∈G}.

(vi) Let G be a group and H ≤ G . Then there is a bijective correspondence
between G/H and H\G .

(vii) The number of distinct left (or right) cosets of subgroup H of G is called
the index of H in G, which is denoted by G : H ]. In other words,

[G : H ] = |G/H | = |H\G|.

Consequently, for a finite group G we have

|G| = [G : H ] · |H |.

(viii) Lagrange’s Theorem. Let G be a finite group and H ≤G . Then |H | | |G|.
(ix) The Euler totient function is defined by:

φ(n) = |{k ∈Z+ |k < n and gcd(k,n) = 1}|.

(x) The multiplicative group Un = {[k] ∈ Zn | gcd(k,n) = 1} is called the group
of units modulo n. Note that |Un | =φ(n).

(xi) Euler’s Theorem. If a and n are positive integers such that gcd(a,n) = 1,
then

aφ(n) ≡ 1 (mod n).

(xii) Fermat’s Theorem. If p is a prime number and a is a positive integer, then

ap ≡ a (mod p).

(xiii) Let G be a group and H ,K ≤G . Then:

(a) HK ≤G iff HK = K H ,

(b) H ∩K ≤G , and

(c) If |H |, |K | <∞, then |HK | = |H ||K |
|H ∩K | .
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2.3 Normal subgroups

(i) Let G be a group and H ≤G . Then H is said to be a normal subgroup of G
(in symbols H EG and H CG , if H is proper) if g N g−1 ⊂ N , for all g ∈G .

(ii) Examples of normal subgroups:

(a) mZEZ, for all m ∈Z
(b) An CSn , for n ≥ 3.

(c) For n ≥ 2, SL(n, X )CGL(n, X ), for X =Q,R, or C.

(d) Cn CC×, for n ≥ 2.

(iii) The G be a group, and N ≤ G . Then the following statements are equiva-
lent

(a) N EG .

(b) g N g−1 = N , for all g ∈G .

(c) g N = N g , for all g ∈G .

(d) (g N )(hN ) = g hN , for all g ,h ∈G .

(iv) Let G be a group and NEG . Then G/N forms a group under the operation
(g N ) · (hN ) = g hN .

(v) Let G be a group, and H ≤G such that [G : H ] = 2. Then H CG .

(vi) Let G be group, H ≤G , and N EG . Then

(a) the internal direct product N H = {nh : n ∈ N ,h ∈ H } ≤G

(b) N ∩H EH .

(c) N EN H .

3 Homomorphisms and isomorphisms

3.1 Homomorphisms

(i) Let G , H be group, and ϕ : G → H be a map. Then ϕ is said to be a homo-
morphism if

ϕ(g h) =ϕ(g )ϕ(h),

for all g ,h ∈G .
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(ii) Examples of homomorphisms:

(a) The trivial homomophism ϕ : G → H given by ϕ(x) = 1, for all x ∈G .

(b) The identity homomorphism i : G →G given by i (g ) = g , for all g ∈G .

(c) The map ϕ :Z→Z defined by ϕ(x) = nx for any n ∈Z.

(d) The map ϕn :Z→Zn defined by ϕn(x) = [x].

(e) The determinant map Det : GL(n,C) →C×.

(f) The sign map τ : Sn → {±1} defined by τ(σ) = (−1)n(σ), where if σ is
expressed as product of transpositions, n(σ) is the number of trans-
positions appearing in the product. In other words,

τ(σ) =
{

1, if σ ∈ An , and

−1, otherwise.

(iii) Let ϕ : G → H be a homomorphism.

(a) If ϕ is injective, then it is called a monomorphism.

(b) If ϕ is surjective, then it is called an epimorphism.

(iv) Of the examples in (vii) above, (b) and (c) are isomorphisms, while (d) and
(f) are epimorphisms.

(v) Let ϕ : G → H be a homomorphism. Then:

(a) ϕ(1) = 1 and

(b) ϕ(g−1) =ϕ(g )−1, for all g ∈G .

(vi) Let ϕ : G → H be a homomorphism. Then:

(a) The set kerϕ= {g ∈G : ϕ(g ) = 1} is called the kernel of ϕ.

(b) The set Imϕ= {ϕ(g ) : g ∈G} is called the image of ϕ.

(vii) Let ϕ : G → H be a homomorphism. Then:

(a) kerϕEG .

(b) Imϕ≤ H .

(viii) A homomorphism ϕ : G → H is said to be order-preserving if |g | = |ϕ(g )|,
for every g ∈G of finite order.
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(ix) Let ϕ : G → H be a homomorphism. Then the following statements are
equivalent.

(a) ϕ is a monomorphism.

(b) G ∼= Imϕ.

(c) kerϕ= {1}.

(d) ϕ is order-preserving

3.2 The Isomorphism Theorems

(i) Let G be a group, and N CG . Then the quotient map q : G →G/N given by
q(g ) = g N is an epimorphism.

(ii) First Isomorphism Theorem: Let G , H be groups, and ϕ : G → H is a ho-
momorphism. Then

G/kerϕ∼= Imϕ.

In particular, if ϕ is onto, then

G/kerϕ∼= H .

(iii) Applications of the First isomorphism theorem.

(a) The map Det : GL(n,F ) → F× is an epimorphism whose kernel is given
by

ker(Det) = {A ∈ GL(n,F ) : Det(A) = 1} = SL(n,F ).

Therefore, the First isomorphism theorem implies that

GL(n,F )/SL(n,F ) ∼= F×.

(b) For n ≥ 2, the map βn : Z→ Zn is an epimorphism whose kernel is
given by

ker βn = {x ∈Z :βn(x) = [x] = [0]} = nZ.

Therefore, the First isomorphism Theorem implies that

Z/nZ∼=Zn .
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(c) The map

ϕ :R→ S1 = {z ∈C : |z| = 1} : x
ϕ7−→ e i 2πx

is an epimorphism whose kernel is given by

kerϕ= {x ∈R :ϕ(x) = cos(2πx)+ i sin(2πx) = 1} =Z.

Therefore, the First isomorphism theorem implies that

R/Z∼= S1.

(iv) Let G be a group, H <G , and N CG . Then

(a) H ∩N CH .

(b) N CH N .

(v) Second Isomorphism Theorem: Let G be a group, H <G , and N CG . Then

H/H ∩N ∼= H N /N .

(vi) Third Isomorphism Theorem: Let G be group, and H ,K CG such that H <
K . Then

(G/H)/(K /H) ∼=G/K .

(vii) Some applications of the Third isomorphism theorem.

(a) For positive integers `,m,n such that m | ` and n | m, we know that

`ZCnZ,mZCnZ and `Z< mZ.

Therefore, the Third Isomorphism Theorem implies that

(nZ/`Z)/(mZ/`Z) ∼= nZ/mZ,

or equivalently, we have

Z`/n/Z`/m
∼=Zm/n .

(b) Consider the group D2n , when n is even and n ≥ 4. Then we know
that

〈r n/2〉CD2n ,〈r 〉CD2n , and 〈r n/2〉 < 〈r 〉.
Therefore, the Third isomorphism Theorem implies that

(D2n/〈r n/2〉)/(〈r 〉/〈r n/2〉) ∼= D2n/〈r 〉.
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(viii) Fourth (or Lattice) Isomorphism Theorem: Let G be a group and let NEG .
Then there is a one-to-one correspondence between the set of subgroups
of G containing N and the set of subgroups of G/N . In particular, every
subgroup of G/N is of the form H/N for some subgroup H of G containing
N .

4 Group actions

4.1 Basic definitions and examples

(i) Let G be a group and A be nonempty say. Then an action of G on A, written
as G æ A is a map

G × A → A : (g , a) 7→ g ·a

satisfying the following conditions

(a) 1 ·a = a, for all a ∈ a, and

(b) g · (h ·a) = (g h) ·a, for all g ,h ∈G and a ∈ A.

(ii) Examples of group actions:

(a) There is a natural action (denoted by G æG) of a group G on itself by
left multiplication given by

(g ,h) 7→ g h, for all g ,h ∈G .

The permutation representation ψGæG : G → S(G) afforded by this
action given by

ψGæG (g ) =ϕg , where ϕg (h) = g h, for all h ∈G ,

is called the left regular representation.

(b) A group G also acts on itself by conjugation (denoted by G æc G),
which is defined in the following manner

(g ,h) 7→ g hg−1, for all g ,h ∈G ,

and this yields the permutation representation

ψGæcG (g ) =ϕc
g , where ϕc

g (h) = g hg−1, for all h ∈G .

16



(c) Let Pn be the regular n-gon imbedded within the closed disk {z ∈C :
|z| ≤ 1} ⊂ C so that its vertices coincide with the roots of unity. Then
D2n = 〈r, s〉æ Pn and this action if defined as follows for each z ∈ Pn :

i. r · z = e i 2π/n · z and

ii. s · z = z̄.

(d) The group Zæ R via translation by an integer, which is formally de-
fined as:

Z×R→R : (z, x) 7→ x + z.

In a similar manner, we can define the action Z2 æR2.

(iii) For a group G , the set S(G) = { f : G → G | f is a bijection} forms a group
under composition.

(iv) Every action G æ A induces a homomorphism

ψGæA : G → S(A),

defined by
ψ(g ) =ϕg , where ϕg (a) = g ·a, for all a ∈ A,

which is called the permutation representation induced (or afforded) by
the action.

(v) Conversely, given a homomorphism ψ : G → S(A), the map

G × A → A : (g , a) 7→ψ(g )(a)

defines an action of G on A.

(vi) A group action G æ A is said to be faithful if the permutation representa-
tion ψGæA it affords, is a monomorphism.

(vii) Examples (and non-examples) of faithful actions.

(a) The actions in 4 (ii) (a), (c), and (d) above are faithful actions.

(b) The conjugation action G æc G is not in general a faithful action.
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4.2 The Orbit-Stabilizer Theorem

(i) Consider an action G æ A. Then

(a) for each a ∈ A, the set Ga = {g ∈G |g ·a = a} is called the stabilizer of
a under the action.

(b) or each a ∈ A, the set Oa = {g ·a |g ∈G} is called the orbit of a under
the action.

(c) kerψGæA is called kernel of the action, and is also denoted by Ker(G æ
A).

(ii) Consider an action G æ A. Then

(a) Ker(G æ A)EG , and

(b) for each a ∈ A, Ga ≤G .

(iii) Consider an action G æ A.

(a) Then the relation ∼ on A defined by

a ∼ b ⇐⇒ there exists some g ∈G such that g ·a = b

defines an equivalence relation on A.

(b) Moreover, the equivalence classes under ∼ are precisely the distinct
orbits Oa under the action. Consequently, for any two orbits Oa and
Ob , we have that either

Oa =Ob or Oa ∩Ob =;.

(iv) An action G æ A is said to be transitive if there exists some a ∈ A for which
Oa = A. This is equivalent to requiring that for an action to be transitive,
Oa = A, for all a ∈ A.

(v) Orbit-Stabilizer Theorem: Consider an action G æ A, where |A| <∞. Then
for each a ∈ A, we have that

[G : Ga] = |Oa |.
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4.3 Applications of the Orbit-Stabilizer Theorem

4.3.1 The Burnside Lemma

(i) Consider an action G æ A, where |G|, |A| <∞. Then

|Oa | | |G|, for each a ∈ A.

(ii) The collection of distinct orbits under an action G æ A is defined by:

A/G = {Oa : a ∈ A}.

(iii) Burnside Lemma: Consider an action G æ A, where |G|, |A| <∞. Then the
number of distinct orbits under the action (denoted by |A/G|) is given by

|A/G| = 1

|G|
∑

g∈G
|Ag |,

where Ag = Fixg (A) = {a ∈ A |g ·a = a}.

4.3.2 The action G æG

(i) For a group G , consider the self-action G æG by left-multiplication.

(a) G æG is a transitive action,

(b) Ker(G æG) = 1, and consequently

(c) G
ψGæG
,−−−−→ S(G).

(ii) Cayley’s Thorem: Every group G is isomorphic to a subgroup of S(G). In
particular, if |G| = n, then G isomorphic to a subgroup of Sn .

(iii) Given a group G and H ≤ G , the self-action G æ G induces an action
G æ G/H , which is defined by (g , g ′H) 7→ (g g ′)H , and this action has the
following properties:

(a) It is a transitive action.

(b) Its kernel is the largest normal subgroup of G that is also a subgroup
of H , which is given by

Ker(G æG/H) = ⋂
g∈G

g H g−1.
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(c) GH = H and OH =G/H .

(d) Hence, when |G/H | < ∞ and |G| < ∞, the Orbit-Stabilizer Theorem
yields

[G : H ] = |G|/|H |,
which is the Lagrange’s Theorem.

4.3.3 The action G æc G and the Class Equation

(i) For a group G , the set

Z (G) = {g ∈G |g h = hg , for all h ∈G}

is called the center of G .

(ii) Let G be a group and S ⊆G .

(a) The set
CG (S) = {g ∈G |g s = sg , for all s ∈ S}

is called the centralizer of S in G.

(b) The set
NG (S) = {g ∈G |g Sg−1 = S}

is called the the normalizer of H in G.

(iii) Let G be a group and S ⊆G . Then CG (S) ≤G and NG (S) ≤G . Furthermore,
when S = {h}, we have that CG (h) = NG (h).

(iv) For a group G , consider the self-action G æc G by conjugation.

(a) Since O1 = {1}, G æc G is a non-transitive action.

(b) Ker(G æc G) = Z (G), and hence Z (G)EG .

(c) For each h ∈G , Gh =CG (h).

(d) For each h ∈ G , the orbit Oh = {g hg−1 |g ∈ G} is called the conjugacy
class of h in G (also denoted by Ch).

(v) Let P (G) denote the power set of G . The action G æc G extends to an ac-
tion G æc P (G) defined by (g ,S) 7→ g Sg−1. This action has the following
properties.
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(a) For each S ∈ P (G), we have

GS = {g ∈G |g Sg−1 = S} = NG (S).

(b) For each S ∈ P (G), we have

OS = {g Sg−1 |g ∈G} =CS ,

the conjugacy class of the set S.

(c) When |G| <∞, we have that |P (G)| <∞, and hence the Orbit-Stabilizer
Theorem, yields

|CS | = [G : NG (S)].

(vi) Class Equation: Let G be a finite group, and let g1, g2, . . . , gr be represen-
tatives of the distinct classes of G not contained in Z (G). Then

|G| = |Z (G)|+
r∑

i=1
[G : CG (gi )]

(vii) Let G be a finite group, and p is the smallest prime such that p | |G|. Then
every index p subgroup of G is normal is G .

4.4 Sylow’s Theorems

(i) Let p be a prime number. A group G is said to be a p-group if |G| = pk for
some postive integer k.

(ii) Example of p groups.

(a) Abelian: Zpk and Zk
p .

(b) Non-abelian: Q8, A3, and D2·2k .

(iii) Consider an action G æ A, where |G| = pn and |A| <∞. Then

|A| ≡ |AG | (mod p)

(iv) Let H be a p-subgroup of a finite group G . Then

[NG (H) : H ] ≡ [G : H ] (mod p)
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(v) Cauchy Theorem: Let G be a finite group, and let p be a prime number
such that p | |G|. Then G has an element of order p.

(vi) First Sylow Theorem: Let G be a finite group with |G| = pnm, where p is a
prime number, and m is a positive integer such that p -m. Then

(a) for 1 ≤ i ≤ n, G contains a subgroup of order p i , and

(b) for 1 ≤ i < n, every subgroup of G of order p i is a normal subgroup of
a subgroup of G of order p i+1.

(vii) If |G| = pnm, where p is a prime number, and m is a positive integer such
that p -m, then a subgroup of order pn is called a Sylow p-subgroup of G .

(viii) If |G| = pq , where p and q are primes, then G has a Sylow p-subgroup H
of order p and a Sylow q-subgroup K of order q , and so G = HK .

(ix) Second Sylow Theorem: Any two Sylow p-subgroups of a group G are con-
jugate in G .

(x) If P is a unique Sylow p-subgroup of a group G , then P EG .

(xi) Let P be a Sylow p-subgroup, and Q, a p-subgroup of a group G . Then

NG (P )∩Q = P ∩Q

(xii) Third Sylow Theorem: Let np denote the number of Sylow p-subgroups
of a group G . Then:

(a) np ≡ 1 (mod p) and

(b) for each Sylow p-subgroup P of G , we have [G : NG (P )] = np . Conse-
quently, np | |G|.

4.5 Simple groups

(i) A group G is said to be simple if it has no proper normal subgroups.

(ii) Examples of simple/non-simple groups:

(a) If |G| = p, where p is a prime, then G has no proper subgroups, and
so G has to be simple.
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(b) Let |G| = pk , where p is a prime and k > 1. Then by the First Sylow
Theorem, G has a subgroup H of order pk−1. Since [G : H ] = p, we
have that H ≤G , and so G is non-simple.

(c) Let |G| = 2pk , where p is a prime. Then by the First Sylow Theorem,
G has a subgroup H of order pk−1. Since [G : H ] = 2, we have that
H ≤G , and so G is non-simple.

(d) If |G| = pq , where p < q are distinct primes, then G is not simple, as
it has a subgroup of order q that has index p in G .

(iii) Let G be any group that has non-prime order less than 60. Then G is non-
simple.

(iv) The group A5 (of order 60) is the simple group of smallest non-prime or-
der.

5 Semi-direct products and group extensions

5.1 Direct products

(i) Given two groups G and H , consider the cartesian product G × H with a
binary operation given by

(g1,h2)(g2,h2) = (g1g2,h1h2), for all g1, g2 ∈G and h1,h2 ∈ H .

Under this operation, the set G × H forms a group called the external di-
rect product (or the direct product) of the groups G and H , and is denoted
simply as G ×H .

(ii) The identity element in G×H is (1,1) and the inverse of an element (g ,h) ∈
G ×H is given by (g−1,h−1).

(iii) The notion of a direct of two groups can be extended to define the direct
product of n groups Gi , 1 ≤ i ≤ n, denoted by

n∏
i=1

Gi =G1 ×G2 × . . .×Gn .

(iv) The groups G and H inject into the G×H , via the natural monomorphisms

G ,→G ×H : g 7→ (g ,1)

H ,→G ×H : h 7→ (1,h)
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(v) For any two groups G and H , the natural homomorphism

G ×H → H ×G : (g ,h) 7→ (h, g )

is an isomorphism, and hence we have that

G ×H ∼= H ×G .

In other words, up to isomorphism, the direct product of two groups is
commutative.

(vi) For any three groups G , H , and K , the natural homomorphism

(G ×H)×K → (G ×H)×K : ((g ,h),k) 7→ (g , (h,k))

is an isomorphism, and hence we have that

G × (H ×K ) ∼= (G ×H)×K .

In other words, up to isomorphism, the direct product of three groups is
associative.

(vii) A direct product
n∏

i=1
Gi of groups is abelian, if and only if, each component

group Gi is abelian.

(viii) Let m,n ≥ 2 be positive integers. Then

Zm ×Zn
∼=Zmn

if and only is gcd(m,n) = 1.

(ix) Classification of finitely generated abelian groups: Every finitely gener-
ated abelian group is isomorphic to a group of the form

Zr ×Zr1 × . . .×Zrk , (*)

where n and the ri ≥ 1 are positive integers such that ri | ri+1, for 1 ≤ i ≤
k −1.

(x) Let G be a finitely generated abelian group that has a direct product de-
composition of the form (*) above.

(a) The component Zr is the called free part, and the component Zr1 ×
. . .×Zrk is called the torsion part of the direct product decomposition
of G .

(b) The integer r is called rank of G .
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5.2 Semi-direct products

(i) For a group G , the set

Aut(G) = {ϕ : G →G |ϕ is a isomorphism}

forms a group under composition (with identity element i dG ) called
the automorphism group of G.

(ii) For a group G , Aut(G) ≤ S(G).

(iii) Examples of automorphism groups.

(a) Aut(Zn) ∼=Un , the multiplicative group of units modulo n.

(b) Aut(Z) ∼=Z2.

(c) Aut(D8) ∼= D8.

(iv) Let G , H be groups, and ψ : G → Aut(H) be a homomorphism.

(a) Consider the binary operation · on the set G ×H defined by

(g1,h1) · (g2,h2) = (g1g2,h1ψ(g1)(h2))

Then (G×H , ·) forms a group called the semi-direct product of the
groups G and H with respect to ψ, and is denoted by G nψ H .

(b) The identity element in G nψ H is (1,1) and the inverse of an ele-
ment (g ,h) ∈G ×H is given by (g−1,h−1).

(c) By definition, it follows that H CG nψ H .

(v) A semi-direct product G nψ H is abelian if and only if both G and H
are abelian, and ψ is trivial.

(vi) Examples of semi-direct products:

(a) If ψ is taken to be the trivial homomorphism (that maps all ele-
ments of G to the identity isomorphism 1 ∈ Aut(H)), then

G nψ H =G ×H .

Hence, the semi-direct product of groups is a generalization of
the direct product.

(b) Let G =Zm and H =Zn

• Then a non-trivial homomorphism ψ : G → Aut(H) ∼=Un ex-
ists if and only if

gcd(m,φ(n)) > 1.
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• Moreover,ψ is completely determined byψ(1), and so ifψ(1) =
k ∈Un , then k has to satisfy

km ≡ 1 (mod n).

• Hence, Zm nψZn is often abbreviated as Zn nk Zn .

• In particular, consider the case when m = 2 in example (a)
above with the homomorphismψdetermined byψ(1) =−1 ∈
Aut(H). (Note that −1 here denotes the isomoprhism h

−17−−→
h−1 = −h, for each h ∈ H .) Representing the dihedral group
as before, that is,

D2n = 〈r, s〉 = {1,r,r 2, . . . ,r n−1, s, sr, sr 2, . . . , sr n−1},

we have that
Z2 n−1Zn

∼= D2n

via the isomorphism

(i , j ) 7→ si r j .

(c) If G = H = Z, there exists only non-trivial semi-direct product
ZnψZ, which occurs when

ψ :Z→ Aut(Z) ∼=Z2 : 1
ψ7−→ [1].

(d) Consider group S(R2) of symmetries (or isometries) of the plane
R2. Then subgroup of translations by a vector (in R2) is a normal
subgroup of S(R2) that is isomorphic to R2. Thus, we have

S(R2) ∼= O(2,R)nψR
2,

where ψ : O(2,R) → Aut(R2) is defined by ψ(A)(v) = Av.

(e) The special real orthogonal group H = SO(n,R) is a normal sub-
group of the real orthogonal group G = O(n,R) since [G : H ] = 2.
Consider a subgroup {1,R} < O(n,R), where R is a reflection that
preserves the origin. Then it follows that

O(n,R) ∼= {1,R}nψ SO(n,R) ∼=Z2 nψ SO(n,R),

where Ψ : {1,R} → Aut(SO(n,R)) is defined by ψ(R)(A) = R AR−1).
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(f) For n ≥ 3, the alternating group H = An is a normal subgroup of
the symmetric group G = Sn since [G : H ] = 2. Consider a sub-
group {1,τ} < Sn , where τ ∈ Sn \ An and |τ| = 2. Then it follows
that

Sn
∼= {1,τ}nψ An

∼=Z2 nψ An ,

where Ψ : {1,τ} → An is defined by ψ(τ)(σ) = τστ−1.

5.3 Group Extensions

(i) A sequence of groups Gi and homomorphisms ϕi of the form

.. . →Gn−1
ϕn−1−−−→Gn

ϕn−−→Gn+1 → . . .

is called an exact sequence if kerϕi+1 = Imϕi , for all i .

(ii) (a) A short exact sequence is an exact sequence of the form

1
ϕ0−→ N

ϕ1−→G
ϕ2−→ H

ϕ4−→ 1,

where 1 denotes the trivial group, andϕ0,ϕ4 are trivial homomorhisms.

(b) The exactness of the sequence above implies that ϕ1 is injective and
and ϕ2 is surjective.

(iii) If G , N and H are group, then G is called an extension of H by N if there
exists a short exact sequence of the form

1 → N →G → H → 1.

(iv) Examples of group extensions:

(a) For any group G , and N E G , there is a natural short exact sequence
given by

1 → N ,→G
g 7→g N−−−−−→G/N → 1.

Hence, G is an extension of G/N by N .

(b) A semi-direct product H nψ N of groups N and H is an extension of
H by N by virtue of the short exact sequence:

1 → N
n 7→(n,0)
,−−−−−→ H nψ N

(h,n) 7→h−−−−−−→ H → 1.
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(c) A group G that is an extension of Zm by Zn is called a metacyclic
group.

• D2n is a metacyclic group, which is an extension of Z2 by Zn via
the short exact sequence

1 →〈r 〉 ,→ D2n → D2n/〈r 〉→ 1.

• Q8 is a metacyclic group that is an extension of Z2 by Z4 via the
short exact sequence

1 →〈x〉 ,→Q8 →Q8/〈x〉→ 1,

where x ∈ {i , j ,k}. In fact, Q8 is also an extension of the Klein
4-group Z2 ×Z2 by Z2 via the short exact sequence

1 → Z (Q8) ,→Q8 →Q8/Z (Q8) → 1.

(v) A short exact sequence

1 → N
ϕ1−→G

ϕ2−→ H → 1

splits if there exists a homomorphism ϕ̄2 : H →G such that ϕ2 ◦ ϕ̄2 = i dH .

(vi) A short exact sequence

1 → N
ϕ1−→G

ϕ2−→ H → 1

splits if and only if G ∼= H nψ N .

(vii) Examples of split and non-split short exact sequences.

(a) The short exact sequence

1 → N
n 7→(n,0)
,−−−−−→ H nψ N

(h,n)
ϕ27−→h−−−−−−−→ H → 1

splits as the homomorphism ϕ̄2 : H → H nψ N : h
ϕ̄27−→ (h,0) satisfies

ϕ2 ◦ ϕ̄2 = i dH . In particular, the short exact sequence

1 →〈r 〉 ,→ D2n → D2n/〈r 〉→ 1

splits.
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(b) The short exact sequence

1 →〈x〉 ,→Q8 →Q8/〈x〉→ 1,

where x ∈ {i , j ,k}, does not split, whereas the short exact sequence

1 → Z (Q8) ,→Q8 →Q8/Z (Q8) → 1

splits.

6 Classification of groups up to order 15

Below is a table describing the abelian and non-abelian groups (up to isomor-
phism) of orders ≤ 15.

Order Abelian groups Non-abelian groups
1 Z1 None
2 Z2 None
3 Z3 None
4 Z4, Z2 ×Z2 None
5 Z5 None
6 Z6 S3

7 Z7 None
8 Z8, Z4 ×Z2, Z2 ×Z2 ×Z2 D8, Q8

9 Z9, Z3 ×Z3 None
10 Z10 D10

11 Z11 None
12 Z12, Z6 ×Z2 A4, D12, Z4 nZ3

13 Z13 None
14 Z14 D14

15 Z15 None

7 Solvable groups

7.1 Normal and composition series

(i) Let G be a group.
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(a) A series of subgroups Ni , for 1 ≤ i ≤ k satisfying

1 = N0 EN1 E . . .ENk−1 ENk =G

is called a subnormal series of G .

(b) A subnormal series as above in which each Ni EG is called a normal
series of G .

(c) If in a subnormal series

1 = N0 EN1 E . . .ENk−1 ENk =G ,

the quotient groups Ni+1/Ni are simple for 1 ≤ i ≤ k −1, then the nor-
mal series is called a composition series of G . The quotient groups
Ni+1/Ni are called composition factors.

(ii) Examples of composition and normal series.

(a) The following series of D2n

1C 〈r 〉CD2n

is a normal series for all n, and is a composition series when n is
prime.

(b) The series of Sn

1E An ESn

is a composition series of Sn for n = 3 and for n ≥ 5 (since An is sim-
ple.) However, for n = 4 it is simply a normal series of S4.

(c) Every group G of order pk , for p prime and k > 1 admits a composi-
tion series of the form

1 = H0 EH1 EH2 E . . .EHk−1 EHk =G ,

where Hi is a group of order p i whose existence and normality in
Hi+1 are guaranteed by the Sylow’s Theorems.

(iii) Let G be a group and A,B CG with A 6= B such that both G/A and G/B are
simple. Then G/A ∼= B/A∩B and G/B ∼= A/A∩B .

(iv) Jordan-Holder Theorem. Let G be a finite non-trivial group. Then:
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(a) G has a composition series, and

(b) if

1 = N0 EN1 E . . .ENr−1 ENr =G

and

1 = M0 EM1 E . . .EMs−1 EMs =G

are two composition series’ for G , then r = s, and there exists a per-
mutation π of {1,2, . . . ,r } such that

Mπ(i )+1/Mπ(i )
∼= Ni+1/Ni , for 1 ≤ i ≤ r −1.

7.2 Derived series and solvable groups

(i) The subgroup [G ,G] = 〈S〉 of a group G generated by elements in the set

S = {g hg−1h−1 |g ,h ∈G}

is called the commutator subgroup or the derived subgroup of G . It is also
denoted by G ′ or G (1).

(ii) Let G be a group. Then:

(a) G (1) EG .

(b) G/G (1) is an abelian group called the abelianization of G .

(c) G is abelain if and only if G (1) = 1.

(d) Given N EG , G/N is abelian if and only if [G ,G] ≤ N .

(iii) For i ≥ 0, the i th commutator subgroup (or the i th derived group) G (i ) of a
group G is defined as follows:

(a) G (0) :=G , and

(b) G (i ) := [G (i−1),G (i−1)], for i ≥ 1.

(iv) The derived series (or the commutator series) of a group G is the series

. . .G (i+1) EG (i ) E . . .EG (1) EG (0) =G .
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(v) A group G is said to be solvable if it has a subnormal series

1 = N0 EN1 E . . .ENk−1 ENk =G

such that Ni+1/Ni is abelian, for 1 ≤ i ≤ k −1.

(vi) Examples of solvable and non-solvable groups.

(a) The group S3 is solvable, as it has a normal series

1E A3 ES3,

where A3
∼=Z3 and S3/A3

∼=Z2.

(b) The Jordan-Holder Theorem asserts that S5 has a composition series
given by

1E A5 ES5

that is unique up to permutation of its composition factors, and these
factors are isomorphic to A5 andZ2. Since A5 is a non-abelian simple
group and [S5 : A5] = 2, S5 is not solvable.

(c) Abelian groups are solvable, as all of their subgroups are normal and
all quotient groups formed using these subgroups will also be abelian.

(d) A group G of order pk , for p prime and k > 1 admits a normal series
of the form

1 = H0 EH1 EH2 E . . .EHk−1 EHk =G ,

where Hi is a group of order p i whose existence and normality in
Hi+1 are guaranteed by the Sylow’s Theorems. Since Hi+1/Hi

∼= Zp ,
G is solvable.

(e) Consider a group G such that |G| = pq , where p and q are distinct
primes with p > q . Then by the Sylow’s theorems, G has a unique Sy-
low p-subgroup P of order p, which implies that PCG . Furthermore,
as |G/P | = q , G/P is abelian, and so we have subnormal series of G
with abelian factors given by:

1CP CG .

Therefore, G is solvable.
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(vii) A subgroup of a solvable group is solvable.

(viii) A group G is solvable if and only if there exists N EG such that both N and
G/N are solvable.

(ix) A group G is solvable if and only if there exists and integer k ≥ 0 such that
G (k) = 1.

(x) For a solvable group G , smallest integer k ≥ 0 such that G (k) = 1 is called
the derived length or the solvable length of G .

(xi) Properties of the derived length.

(a) A group G has derived length 0 if and only if G is trivial.

(b) A group G has derived length 1 if and only if G is abelian.

(c) A group has derived length at most two if and only it has an abelian
normal subgroup such that the quotient group is also an abelian group.

(xii) Let G be a finite group. Here are some known non-trivial results on solv-
able groups.

(a) (Philip-Hall) G is solvable if and only if for every divisor d of |G| such
that gcd(d , |G|/d) = 1, G has a subgroup of order d .

(b) (Burnside) If |G| = pa qb , where p and q are primes, then G is solv-
able.

(c) (Feit-Thompson Theorem) If |G| is odd, then G is solvable.

(d) (Thompson) If for for every pair of elements x, y ∈G , 〈x, y〉 is a solv-
able group, then G is solvable.
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